K-Trivial Varieties - Degenerations, Automorphisms, and Periods

K-平凡簇 - 简并、自同构和周期

基本信息

  • 批准号:
    2101640
  • 负责人:
  • 金额:
    $ 32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Algebraic geometry is concerned with the study of algebraic varieties, that is geometric objects defined by polynomial equations. Such objects are ubiquitous in mathematics, and are relevant to a variety of real world applications ranging from cryptography, to computational biology, to models of the universe in physics. Indeed, the Calabi-Yau threefolds, a special class of algebraic varieties, are abstract representations of the shape of the universe in string theory. A very consequential, wide-open question regarding the Calabi-Yau threefolds is the existence of finitely many types of such objects. This proposal is concerned with the study of Calabi-Yau threefolds and of a related, wider class of algebraic varieties, the so-called K-trivial varieties. A number of questions ranging from the above-mentioned finiteness question to more tangible questions will be investigated. This study will involve a number of the PI’s graduate students and postdocs. Some additional research and outreach activities related to the subject are also planned. The study of K-trivial varieties, that is algebraic varieties with trivial canonical class, is a central subject in algebraic geometry. The proposed projects will focus on two main classes of K-trivial varieties: hyper-Kaehler manifolds and Calabi-Yau threefolds. The motivational goals driving this study are the finiteness of deformation types for such objects, and the complementary question of constructing new deformation classes (especially in the hyper-Kaehler case). Intermediate steps towards these challenging objectives include questions regarding the automorphism groups, that is the symmetries of such objects; the deformations and degenerations, that is breaking up the K-trivial varieties into simpler, more manageable pieces; and the fibrations of K-trivial varieties (especially Lagrangian fibrations for hyper-Kaehler manifolds), that is constructing such varieties from lower dimensional objects. A main tool in this investigation is Hodge theory, and the associated period maps.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
代数几何研究的是代数变量,即由多项式方程定义的几何对象。这些对象在数学中无处不在,并且与各种现实世界的应用相关,从密码学到计算生物学,再到物理学中的宇宙模型。事实上,Calabi-Yau三折,一类特殊的代数变体,是弦理论中宇宙形状的抽象表示。关于Calabi-Yau三倍体,一个非常重要的、广泛开放的问题是,这种物体是否存在有限多种类型。这个提议是关于Calabi-Yau三倍和一个相关的,更广泛的代数变种,所谓的k平凡变种的研究。一系列问题,从上述的有限性问题到更具体的问题,将被调查。这项研究将涉及一些PI的研究生和博士后。还计划了与该主题有关的一些其他研究和外联活动。k -平凡变异体,即具有平凡正则类的代数变异体,是代数几何中的一个中心课题。提议的项目将集中在两类k平凡的变种:超kaehler流形和Calabi-Yau三倍。驱动本研究的动机目标是此类对象的变形类型的有限性,以及构建新变形类的补充问题(特别是在hyper-Kaehler案例中)。实现这些挑战性目标的中间步骤包括关于自同构群的问题,即这些对象的对称性;变形和退化,将k平凡变量分解成更简单,更易于管理的部分;以及k平凡变体的振动(特别是超凯勒流形的拉格朗日振动),即从低维对象构造这些变体。这项研究的一个主要工具是霍奇理论和相关的时期图。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deformation of rational singularities and Hodge structure
  • DOI:
    10.14231/ag-2022-014
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    M. Kerr;R. Laza;M. Saito
  • 通讯作者:
    M. Kerr;R. Laza;M. Saito
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Radu Laza其他文献

Radu Laza的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Radu Laza', 18)}}的其他基金

Moduli and Periods
模数和周期
  • 批准号:
    1802128
  • 财政年份:
    2018
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Hodge theory, Moduli and Representation theory
FRG:协作研究:霍奇理论、模数和表示理论
  • 批准号:
    1361143
  • 财政年份:
    2014
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
CAREER: Advances in Hodge Theory and Moduli
职业:霍奇理论和模数的进展
  • 批准号:
    1254812
  • 财政年份:
    2013
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
Moduli Spaces - Geometry and Arithmetic
模空间 - 几何和算术
  • 批准号:
    1200875
  • 财政年份:
    2012
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Arithmetic and Geometry of Calabi-Yau Varieties Workshop
Calabi-Yau品种的算术和几何工作坊
  • 批准号:
    1100007
  • 财政年份:
    2011
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Birational Geometry of Moduli Spaces and Applications
模空间双有理几何及其应用
  • 批准号:
    0968968
  • 财政年份:
    2009
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Birational Geometry of Moduli Spaces and Applications
模空间双有理几何及其应用
  • 批准号:
    0856203
  • 财政年份:
    2009
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant

相似国自然基金

正则半单Hessenberg varieties上的代数拓扑
  • 批准号:
    11901218
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Wonderful Varieties, Hyperplane Arrangements, and Poisson Representation Theory
奇妙的品种、超平面排列和泊松表示论
  • 批准号:
    2401514
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
The 2nd brick-Brauer-Thrall conjecture via tau-tilting theory and representation varieties
通过 tau 倾斜理论和表示变体的第二个砖-布劳尔-萨尔猜想
  • 批准号:
    24K16908
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Arithmetic Dynamical Systems on Projective Varieties
职业:射影簇的算术动力系统
  • 批准号:
    2337942
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
Combinatorics of Total Positivity: Amplituhedra and Braid Varieties
总正性的组合:幅面体和辫子品种
  • 批准号:
    2349015
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
CAREER: Algebraicity and Integral Models of Shimura Varieties
职业:志村品种的代数性和积分模型
  • 批准号:
    2338942
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
Quasimaps to Nakajima Varieties
中岛品种的准地图
  • 批准号:
    2401380
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
Diagonal Grobner Geometry of Generalized Determinantal Varieties
广义行列式簇的对角格罗布纳几何
  • 批准号:
    2344764
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Prosodic Event Annotation and Detection in Three Varieties of English
三种英语韵律事件标注与检测
  • 批准号:
    2316030
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
CAREER: Birational Geometry and K-stability of Algebraic Varieties
职业:双有理几何和代数簇的 K 稳定性
  • 批准号:
    2234736
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
Producing more with less adapting high yielding barley varieties to low input agriculture
让高产大麦品种适应低投入农业,少花钱多产
  • 批准号:
    BB/Y513672/1
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Training Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了