Birational Geometry of Moduli Spaces and Applications
模空间双有理几何及其应用
基本信息
- 批准号:0856203
- 负责人:
- 金额:$ 10.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-15 至 2009-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).The principal investigator is interested in the study of the geometry of moduli spaces, especially those that are birational to modular varieties of orthogonal or unitary type (examples include the moduli space of K3 surfaces or low genus curves). Laza's work exploits the existence of multiple birational models for a moduli space (e.g. obtained by using different compactification methods, such as Geometric Invariant Theory (GIT) or Hodge theory) to extract useful geometric information about a given moduli space. The principal investigator plans to apply this type of ideas to various projects involving moduli spaces. A first question that the PI proposes to investigate is the problem of finding a geometric compactification for the moduli of polarized K3 surfaces. The methods of the variation of GIT quotients and ideas coming from the minimal model program offer a promising approach to the low degree cases. A second project addresses various questions about the moduli of compact hyperkaehler manifolds, higher dimensional analogues of the K3 surfaces. In particular, the PI plans to investigate from an arithmetic and geometric point of view the case of moduli space of double EPW sextics (introduced by O'Grady). A third project is concerned with some concrete questions about the birational geometry of moduli spaces of genus 4 curves and cubic threefolds. The general area of the proposal is algebraic geometry, the branch of mathematics that is concerned with the geometric properties of algebraic varieties (geometric objects defined by polynomial equations). A simple example of algebraic variety is the complex torus, that has the shape of a doughnut. While in other branches of mathematics (such as topology) all doughnuts have the same shape, in algebraic geometry the precise shape (in this case the ratio between the diameter and width) is very important. In fact, the precise quantification of the shape of the geometric objects within a given topological class is the subject of the moduli theory. Moduli theory is a central field of study in algebraic geometry and has numerous applications in mathematics and modern physics.
该奖项由2009年美国复苏和再投资法案(公法111-5)资助。主要研究人员对模空间的几何研究感兴趣,特别是那些与正交或酉型模簇(例如,K3曲面或低亏格曲线的模空间)具有对偶关系的模空间。Laza的工作利用了模空间的多个双态模型的存在(例如,通过使用不同的紧化方法,如几何不变理论(GIT)或Hodge理论)来提取关于给定的模空间的有用的几何信息。首席研究员计划将这种类型的想法应用于涉及模空间的各种项目。PI建议研究的第一个问题是找到极化K3曲面的模数的几何紧化问题。Git商的变分方法和最小模型规划的思想为解决低阶次问题提供了一种很有前途的途径。第二个项目解决了关于紧致超Kaehler流形的各种问题,紧致超Kaehler流形是K3曲面的高维类似物。特别是,PI计划从算术和几何的角度研究双EPW六次元的模空间的情况(由O‘Grady引入)。第三个项目涉及亏格为4的曲线和三次三重的模空间的二次几何的一些具体问题。该提案的一般领域是代数几何学,这是数学的一个分支,涉及代数族(由多项式方程定义的几何对象)的几何性质。代数变化的一个简单例子是具有甜甜圈形状的复杂环面。虽然在其他数学分支(如拓扑学)中,所有甜甜圈的形状都相同,但在代数几何中,精确的形状(在这种情况下是直径和宽度的比率)是非常重要的。事实上,给定拓扑类内几何对象的形状的精确量化是模理论的主题。模理论是代数几何的中心研究领域,在数学和现代物理中有着广泛的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Radu Laza其他文献
Radu Laza的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Radu Laza', 18)}}的其他基金
K-Trivial Varieties - Degenerations, Automorphisms, and Periods
K-平凡簇 - 简并、自同构和周期
- 批准号:
2101640 - 财政年份:2021
- 资助金额:
$ 10.06万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Hodge theory, Moduli and Representation theory
FRG:协作研究:霍奇理论、模数和表示理论
- 批准号:
1361143 - 财政年份:2014
- 资助金额:
$ 10.06万 - 项目类别:
Standard Grant
CAREER: Advances in Hodge Theory and Moduli
职业:霍奇理论和模数的进展
- 批准号:
1254812 - 财政年份:2013
- 资助金额:
$ 10.06万 - 项目类别:
Continuing Grant
Moduli Spaces - Geometry and Arithmetic
模空间 - 几何和算术
- 批准号:
1200875 - 财政年份:2012
- 资助金额:
$ 10.06万 - 项目类别:
Standard Grant
Arithmetic and Geometry of Calabi-Yau Varieties Workshop
Calabi-Yau品种的算术和几何工作坊
- 批准号:
1100007 - 财政年份:2011
- 资助金额:
$ 10.06万 - 项目类别:
Standard Grant
Birational Geometry of Moduli Spaces and Applications
模空间双有理几何及其应用
- 批准号:
0968968 - 财政年份:2009
- 资助金额:
$ 10.06万 - 项目类别:
Standard Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: Arithmetic, Birational Geometry, and Moduli
会议:算术、双有理几何和模
- 批准号:
2309181 - 财政年份:2023
- 资助金额:
$ 10.06万 - 项目类别:
Standard Grant
Teichmueller dynamics and the birational geometry of moduli space
Teichmueller 动力学和模空间双有理几何
- 批准号:
DE220100918 - 财政年份:2023
- 资助金额:
$ 10.06万 - 项目类别:
Discovery Early Career Researcher Award
K-Stability, Moduli, and Birational Geometry
K 稳定性、模量和双有理几何
- 批准号:
2200690 - 财政年份:2022
- 资助金额:
$ 10.06万 - 项目类别:
Standard Grant
Mirror Symmetry, Birational Geometry, and Moduli.
镜像对称、双有理几何和模。
- 批准号:
2200875 - 财政年份:2022
- 资助金额:
$ 10.06万 - 项目类别:
Standard Grant
Studies in Moduli Theory and Birational Geometry
模理论与双有理几何研究
- 批准号:
2100548 - 财政年份:2021
- 资助金额:
$ 10.06万 - 项目类别:
Continuing Grant
Studies in Moduli Theory and Birational Geometry
模理论与双有理几何研究
- 批准号:
1759514 - 财政年份:2018
- 资助金额:
$ 10.06万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Moduli Spaces, Birational Geometry, and Stability Conditions
FRG:协作研究:模空间、双有理几何和稳定性条件
- 批准号:
1664215 - 财政年份:2017
- 资助金额:
$ 10.06万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Moduli Spaces, Birational Geometry, and Stability Conditions
FRG:协作研究:模空间、双有理几何和稳定性条件
- 批准号:
1664303 - 财政年份:2017
- 资助金额:
$ 10.06万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Moduli Spaces, Birational Geometry, and Stability Conditions
FRG:协作研究:模空间、双有理几何和稳定性条件
- 批准号:
1663813 - 财政年份:2017
- 资助金额:
$ 10.06万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Moduli Spaces, Birational Geometry, and Stability Conditions
FRG:协作研究:模空间、双有理几何和稳定性条件
- 批准号:
1664296 - 财政年份:2017
- 资助金额:
$ 10.06万 - 项目类别:
Continuing Grant