Heegner Points, L-Functions of Elliptic Curves, and Generalizations
海格纳点、椭圆曲线的 L 函数和概括
基本信息
- 批准号:1802269
- 负责人:
- 金额:$ 14.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project concerns one of the basic questions in mathematics: solving algebraic equations. Information about solutions is encoded in various mathematical objects: algebraic cycles, automorphic forms, and L-functions. The project aims to deepen the understanding of these mathematical objects and the connection between them. It will also advance the techniques for understanding the arithmetic of elliptic curves, particularly the Birch and Swinnerton-Dyer conjecture, one of the seven Millennium Prize Problems of the Clay Mathematics Institute. Elliptic curves and similar algebraic equations have wide application in other disciplines such as cryptography; results of the research are expected to advance understanding in these areas as well.The research comprises several projects in number theory: the arithmetic of Heegner points, L-functions of elliptic curves, and their higher dimensional generalizations. The work will investigate the congruences between Heegner points and their various applications, including Goldfeld's conjecture on elliptic curves in quadratic twists families and the rank of elliptic curves in Rubin-Silverberg families. The project will also investigate the Birch and Swinnerton-Dyer formula for elliptic curves at additive primes. For higher-dimensional generalizations, the investigator will explore arithmetic intersection problems on Rapoport-Zink spaces arising from arithmetic Gan-Gross-Prasad conjectures and the arithmetic fundamental lemma. It is also planned to initiate a new program for simultaneous generalization of the Waldspurger and Gross-Zagier formulas.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个研究项目涉及数学中的一个基本问题:解代数方程。关于解的信息被编码在各种数学对象中:代数圈、自守形式和L函数。该项目旨在加深对这些数学对象的理解以及它们之间的联系。它还将推进理解椭圆曲线算术的技术,特别是伯奇和斯温纳顿-戴尔猜想,克莱数学研究所的七个千年奖问题之一。椭圆曲线和类似的代数方程在密码学等其他学科中有着广泛的应用;研究结果有望促进对这些领域的理解。研究包括数论中的几个项目:Heegner点的算术,椭圆曲线的L-函数及其高维推广。这项工作将研究Heegner点之间的同余关系及其各种应用,包括Goldfeld关于二次扭曲族中椭圆曲线的猜想和Rubin-Silverberg族中椭圆曲线的秩。该项目还将研究椭圆曲线在可加素数上的Birch和Swinnerton-Dyer公式。 对于更高维的推广,研究者将探讨Rapoport-Zink空间上的算术相交问题,这些问题来自算术Gan-Gross-Prasad代数和算术基本引理。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kudla-Rapoport cycles and derivatives of local densities
库德拉-拉波波特循环和局部密度的导数
- DOI:10.1090/jams/988
- 发表时间:2021
- 期刊:
- 影响因子:3.9
- 作者:Li, Chao;Zhang, Wei
- 通讯作者:Zhang, Wei
Fourier–Jacobi cycles and arithmetic relative trace formula (with an appendix by Chao Li and Yihang Zhu)
- DOI:10.4310/cjm.2021.v9.n1.a1
- 发表时间:2021-02
- 期刊:
- 影响因子:0
- 作者:Yifeng Liu
- 通讯作者:Yifeng Liu
Chow groups and L -derivatives of automorphic motives for unitary groups, II.
Chow 群和酉群自守动机的 L 导数,II。
- DOI:10.1017/fmp.2022.2
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Li, Chao;Liu, Yifeng
- 通讯作者:Liu, Yifeng
Chow groups and L-derivatives of automorphic motives for unitary groups
Chow 群和酉群自守动机的 L-导数
- DOI:10.4007/annals.2021.194.3.6
- 发表时间:2021
- 期刊:
- 影响因子:4.9
- 作者:Li, Chao;Liu, Yifeng
- 通讯作者:Liu, Yifeng
FINE DELIGNE–LUSZTIG VARIETIES AND ARITHMETIC FUNDAMENTAL LEMMAS
精细设计-LUSZTIG 品种和算术基本引理
- DOI:10.1017/fms.2019.45
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:HE, XUHUA;LI, CHAO;ZHU, YIHANG
- 通讯作者:ZHU, YIHANG
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chao Li其他文献
The anaerobic and starving treatment eliminates filamentous bulking and recovers biocathode biocatalytic activity with residual organic loading in microbial electrochemical system
厌氧和饥饿处理消除了丝状膨胀并恢复了微生物电化学系统中残余有机负载的生物阴极生物催化活性
- DOI:
10.1016/j.cej.2020.127072 - 发表时间:
2020 - 期刊:
- 影响因子:15.1
- 作者:
Chao Li;Weihua He;DanDan Liang;Yan Tian;Ravi Shankar Yadav;Da Li;Junfeng Liu;Yujie Feng - 通讯作者:
Yujie Feng
An IoT Crossdomain Access Decision-Making Method Based on Federated Learning
一种基于联邦学习的物联网跨域访问决策方法
- DOI:
10.1155/2021/8005769 - 发表时间:
2021-12 - 期刊:
- 影响因子:0
- 作者:
Chao Li;Fan Li;Zhiqiang Hao;Lihua Yin;Zhe Sun;Chonghua Wang - 通讯作者:
Chonghua Wang
Distribution of the type I interferon in different organs of chicken digestive system
Ⅰ型干扰素在鸡消化系统各器官中的分布
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:1.3
- 作者:
Shuyuan Guo;Chao Li;Xiu;Cui Zhao;Wei - 通讯作者:
Wei
Metal-bridged DNA-functionalized silica nanoparticles for multifacet biological applications
用于多方面生物应用的金属桥 DNA 功能化二氧化硅纳米粒子
- DOI:
10.1016/j.microc.2021.107017 - 发表时间:
2021-11 - 期刊:
- 影响因子:4.8
- 作者:
Yue Huang;Jiehua Ma;Yuting Yan;Chao Li - 通讯作者:
Chao Li
β‐Cyclodextrin Anchor NiCo 2 S 4 on Graphene to Enhance Electrochemical Performance of Supercapacitor
石墨烯上的β-环糊精锚定NiCo 2 S 4 增强超级电容器的电化学性能
- DOI:
10.1002/ente.202200490 - 发表时间:
2022-08 - 期刊:
- 影响因子:3.8
- 作者:
Xiaobei Zang;Liheng Liang;Xuemeizi Wang;Chao Li;Peixu Li;Qingguo Shao;Ning Cao - 通讯作者:
Ning Cao
Chao Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chao Li', 18)}}的其他基金
Scalar curvature and geometric variational problems
标量曲率和几何变分问题
- 批准号:
2303624 - 财政年份:2023
- 资助金额:
$ 14.36万 - 项目类别:
Standard Grant
Geometric Variational Problems and Scalar Curvature
几何变分问题和标量曲率
- 批准号:
2202343 - 财政年份:2021
- 资助金额:
$ 14.36万 - 项目类别:
Standard Grant
Arithmetic Geometry and Automorphic L-Functions
算术几何和自同构 L 函数
- 批准号:
2101157 - 财政年份:2021
- 资助金额:
$ 14.36万 - 项目类别:
Continuing Grant
Geometric Variational Problems and Scalar Curvature
几何变分问题和标量曲率
- 批准号:
2005287 - 财政年份:2020
- 资助金额:
$ 14.36万 - 项目类别:
Standard Grant
相似国自然基金
光子人工微结构中Exceptional Points附近的模式耦合及相关新特性研究
- 批准号:11674247
- 批准年份:2016
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
A Study on Estimation of Functions with Discontinuous Points by Edge-Preserving Spline Smoothing and Its Applications
保边样条平滑估计含不连续点函数及其应用研究
- 批准号:
19K20361 - 财政年份:2019
- 资助金额:
$ 14.36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Modelling survival functions and their critical points
生存函数及其临界点建模
- 批准号:
2278010 - 财政年份:2019
- 资助金额:
$ 14.36万 - 项目类别:
Studentship
Assessing Ecosystem Services and Functions in rural environments with emphasis on trade-offs and tipping points in their provisioning
评估农村环境中的生态系统服务和功能,重点是其供应中的权衡和临界点
- 批准号:
404870679 - 财政年份:2018
- 资助金额:
$ 14.36万 - 项目类别:
Research Grants
Critical Points of Master Functions, Hypergeometric Integrals of Arrangements, and Quantum Integrable Systems
主函数的临界点、排列的超几何积分和量子可积系统
- 批准号:
1665239 - 财政年份:2017
- 资助金额:
$ 14.36万 - 项目类别:
Continuing Grant
Critical Points of Functions, Multidimensional Hypergeometric Integrals, and Quantum Integrable Systems
函数的临界点、多维超几何积分和量子可积系统
- 批准号:
1362924 - 财政年份:2014
- 资助金额:
$ 14.36万 - 项目类别:
Standard Grant
Constructing a theory of fixed points assciated with one-way functions
构建与单向函数相关的不动点理论
- 批准号:
26330150 - 财政年份:2014
- 资助金额:
$ 14.36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic cycles, L-functions and rational points on elliptic curves
代数环、L 函数和椭圆曲线上的有理点
- 批准号:
1015173 - 财政年份:2009
- 资助金额:
$ 14.36万 - 项目类别:
Standard Grant
Rational points on elliptic curves over totally real fields and p-adic L-functions
全实域和 p 进 L 函数上椭圆曲线上的有理点
- 批准号:
0901289 - 财政年份:2009
- 资助金额:
$ 14.36万 - 项目类别:
Standard Grant
Algebraic cycles, L-functions and rational points on elliptic curves
代数环、L 函数和椭圆曲线上的有理点
- 批准号:
0801191 - 财政年份:2008
- 资助金额:
$ 14.36万 - 项目类别:
Standard Grant
General hypergeometric functions and geometry of the space of arrangements of points with infinitesimal neighborhoods
一般超几何函数和无穷小邻域点排列空间的几何
- 批准号:
15340058 - 财政年份:2003
- 资助金额:
$ 14.36万 - 项目类别:
Grant-in-Aid for Scientific Research (B)