Perverse Sheaves in Representation Theory
表示论中的反常滑轮
基本信息
- 批准号:0600909
- 负责人:
- 金额:$ 9.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-06-01 至 2009-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research program centers around topological questions in algebraicgeometry and representation theory. The focus is on the categoricalstructure of sheaves on singular algebraic varieties. Particular emphasisis placed on loop spaces and other varieties arising in the geometricLanglands program. Several directions of study are considered.The first project applies ideas from the geometric Langlands program tothe representation theory of real groups. It develops a geometric form ofharmonic analysis for moduli spaces of real bundles on a Riemann surface.The main goal is to further open the representation theory of real groupsto the powerful tools of algebraic geometry. The second project seeks toextend the representation theory of loop groups to noncompact groups.Potential applications include the geometric quantization of spaces offlat connections on Riemann surfaces, and the resulting construction ofnew topological 2+1 dimensional quantum field theories. The thirdproject aims to develop an ``elementary" microlocal theory of perversesheaves. As a first step in this direction, it seeks an obstruction theoryfor local systems on the complement of a singular divisor.Representation theory is the mathematical study of symmetry. Some of themost important phenomena involve places where there is a breakdown ofsymmetry. For example, many surprising combinatorial formulas result fromwriting a highly symmetric quantity in terms of contributions fromasymmetric pieces. In geometric representation theory, one of the primarytools to measure the breakdown of symmetry is the theory of perversesheaves. These are complicated objects which detect dynamic aspects ofsingularities, the locus where symmetry breaks down. The research programdescribed here aims to understand perverse sheaves and their role inrepresentation theory. It seeks to apply perverse sheaves to forms ofsymmetry which arise in physics. In particular, it aims to develop ageometric version of harmonic analysis and representation theory forsymmetries involving loops on a space. The project also seeks elementaryways to think about perverse sheaves from a dynamic perspective.
研究项目围绕代数几何和表示论中的拓扑问题。重点是奇异代数簇上层的范畴结构。特别强调放在循环空间和其他品种所产生的geometricLanglands计划。几个方向的研究被认为是。第一个项目适用的想法从几何朗兰兹计划的代表性理论的真实的群体。它给出了黎曼曲面上真实的丛的模空间的调和分析的几何形式,其主要目的是进一步将真实的群的表示理论引入代数几何的有力工具中。第二个项目是将圈群的表示理论推广到非紧群,潜在的应用包括黎曼曲面上的平面连通空间的几何量子化,以及由此产生的新的拓扑2+1维量子场论的构造。第三个项目的目标是发展一个“初级”的反常层微局部理论。作为这一方向的第一步,它寻求一个障碍theoryfor局部系统上的一个奇异因子的补集。一些最重要的现象涉及到对称性破坏的地方。例如,许多令人惊讶的组合公式都是由一个高度对称的量的对称部分的贡献而产生的。在几何表示论中,测量对称性破坏的主要工具之一是反常层理论。这些复杂的物体可以探测到奇异点的动态方面,对称性被破坏的轨迹。这里描述的研究计划旨在理解反常层及其在表示理论中的作用。它试图将反常层应用于物理学中出现的对称形式。特别是,它的目的是发展几何版本的调和分析和表示理论的对称性涉及循环的空间。该项目还寻求从动态角度思考反常层的基本方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Nadler其他文献
A combinatorial calculation of the Landau–Ginzburg model $$M={\mathbb {C}}^{3},W=z_1 z_2 z_3$$
- DOI:
10.1007/s00029-016-0254-x - 发表时间:
2016-08-09 - 期刊:
- 影响因子:1.200
- 作者:
David Nadler - 通讯作者:
David Nadler
David Nadler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Nadler', 18)}}的其他基金
Representation Theory and Symplectic Geometry Inspired by Topological Field Theory
拓扑场论启发的表示论和辛几何
- 批准号:
2401178 - 财政年份:2024
- 资助金额:
$ 9.34万 - 项目类别:
Standard Grant
Lagrangian Skeleta in Symplectic Geometry and Representation Theory
辛几何与表示论中的拉格朗日骨架
- 批准号:
2101466 - 财政年份:2021
- 资助金额:
$ 9.34万 - 项目类别:
Continuing Grant
Singularities and Sheaves in Symplectic Geometry and Geometric Representation Theory
辛几何和几何表示理论中的奇点和滑轮
- 批准号:
1802373 - 财政年份:2018
- 资助金额:
$ 9.34万 - 项目类别:
Continuing Grant
Microlocal Geometry in Gauge Theory
规范理论中的微局域几何
- 批准号:
1502178 - 财政年份:2015
- 资助金额:
$ 9.34万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: In and Around Theory X
FRG:协作研究:X 理论及其周边
- 批准号:
1342948 - 财政年份:2012
- 资助金额:
$ 9.34万 - 项目类别:
Standard Grant
Quantum topological structures in geometric representation theory
几何表示论中的量子拓扑结构
- 批准号:
1319287 - 财政年份:2012
- 资助金额:
$ 9.34万 - 项目类别:
Standard Grant
Quantum topological structures in geometric representation theory
几何表示论中的量子拓扑结构
- 批准号:
1201319 - 财政年份:2012
- 资助金额:
$ 9.34万 - 项目类别:
Standard Grant
FRG: Collaborative Research: In and Around Theory X
FRG:协作研究:X 理论及其周边
- 批准号:
1160227 - 财政年份:2012
- 资助金额:
$ 9.34万 - 项目类别:
Standard Grant
Representation theory via topological field theory
通过拓扑场论的表示论
- 批准号:
0901114 - 财政年份:2009
- 资助金额:
$ 9.34万 - 项目类别:
Standard Grant
相似海外基金
Representation theory of affine Lie algebras and enumerative geometry of sheaves on toric surfaces and threefolds
仿射李代数表示论与复曲面和三重滑轮的枚举几何
- 批准号:
567867-2022 - 财政年份:2022
- 资助金额:
$ 9.34万 - 项目类别:
Postdoctoral Fellowships
Geometric Methods in the Representation Theory of Affine Hecke Algebras, Finite Reductive Groups, and Character Sheaves
仿射 Hecke 代数、有限还原群和特征轮表示论中的几何方法
- 批准号:
1855773 - 财政年份:2019
- 资助金额:
$ 9.34万 - 项目类别:
Standard Grant
Microlocal Sheaves, Symplectic Geometry and Applications in Representation Theory
微局域滑轮、辛几何及其在表示论中的应用
- 批准号:
1854232 - 财政年份:2018
- 资助金额:
$ 9.34万 - 项目类别:
Standard Grant
Singularities and Sheaves in Symplectic Geometry and Geometric Representation Theory
辛几何和几何表示理论中的奇点和滑轮
- 批准号:
1802373 - 财政年份:2018
- 资助金额:
$ 9.34万 - 项目类别:
Continuing Grant
Categories of Sheaves in Representation Theory
表示论中滑轮的类别
- 批准号:
1802299 - 财政年份:2018
- 资助金额:
$ 9.34万 - 项目类别:
Standard Grant
Microlocal Sheaves, Symplectic Geometry and Applications in Representation Theory
微局域滑轮、辛几何及其在表示论中的应用
- 批准号:
1710481 - 财政年份:2017
- 资助金额:
$ 9.34万 - 项目类别:
Standard Grant
Geometric Methods in the Representation Theory of Affine Hecke Algebras, Finite Reductive Groups, and Character Sheaves
仿射 Hecke 代数、有限还原群和特征轮表示论中的几何方法
- 批准号:
1566618 - 财政年份:2016
- 资助金额:
$ 9.34万 - 项目类别:
Continuing Grant
Microlocal Sheaves in Geometric Representation Theory
几何表示理论中的微局域滑轮
- 批准号:
1502125 - 财政年份:2015
- 资助金额:
$ 9.34万 - 项目类别:
Standard Grant
CAREER: Knot invariants, moduli spaces of sheaves and representation theory
职业:结不变量、滑轮模空间和表示论
- 批准号:
1352398 - 财政年份:2014
- 资助金额:
$ 9.34万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometric methods in the representation theory of affine Hecke algebras, finite reductive groups and character sheaves
数学科学:仿射 Hecke 代数、有限约简群和特征轮表示论中的几何方法
- 批准号:
1303060 - 财政年份:2013
- 资助金额:
$ 9.34万 - 项目类别:
Continuing Grant