Enumerative Geometry, Algebra, and Combinatorics in String Theory

弦理论中的枚举几何、代数和组合学

基本信息

  • 批准号:
    1802410
  • 负责人:
  • 金额:
    $ 18.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

This award supports research that aims to further build the bridge between abstract mathematics and theoretical physics (in particular string theory). This relationship follows naturally from the concept of supersymmetry, which postulates that at very small length scales there is an exact parity between bosonic and fermionic particles in nature. The resulting algebraic structure leads to new and deep relations between string theory and black hole entropy on one side, and abstract algebraic geometry and topology on the other. This unique interaction leads in turn to important advances and novel ideals in both disciplines. It also promotes a new way of thinking combining mathematical rigor with the physical insight and flexibility of string theory. The goal of this project is to make significant advances in the refined Donaldson-Thomas theory of orbifolds as well as develop a new approach to cohomological invariants of moduli spaces of sheaves on Calabi-Yau threefolds. The first direction aims to prove new combinatorial formulas for orbifold refined stable pairs invariants using localization and wall-crossing. This is an important component of at least two current major open problems, concerning the cohomology of tamely ramified character varieties, as well as an algebraic geometric construction of knot invariants. The second part of the project aims to develop a new approach to the cohomology of moduli spaces of two dimensional sheaves on Calabi-Yau threefolds using string duality. The main idea is to build a concrete relation between the cohomology of such moduli spaces sheaves and chiral algebras on Laumon spaces.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持旨在进一步在抽象数学和理论物理(特别是弦理论)之间架起桥梁的研究。这种关系自然源于超对称性的概念,该概念假定在非常小的长度尺度下,在自然界中玻色子和费米子粒子之间存在精确的对等。由此产生的代数结构一方面导致弦理论和黑洞熵之间新的深层次的联系,另一方面导致抽象的代数几何和拓扑之间的关系。这种独特的互动反过来又导致了这两个学科的重要进步和新颖的理想。它还促进了一种新的思维方式,将数学的严谨性与弦理论的物理洞察力和灵活性相结合。本项目的目标是在改进的Donaldson-Thomas奥比诺德理论方面取得重大进展,并发展一种新的方法来研究Calabi-Yau三重层上的层的模空间的上同调不变量。第一个方向是利用局部化和跨越墙的方法证明新的组合公式。这是当前至少两个主要公开问题的重要组成部分,涉及驯服分支特征簇的上同调以及纽结不变量的代数几何构造。该项目的第二部分旨在利用弦对偶发展一种新的方法来证明Calabi-Yau三重上的二维层轮模空间的上同调。其主要思想是在Laumon空间上这种模空间、滑轮和手征代数的上同调之间建立具体的关系。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Duiliu Diaconescu其他文献

Duiliu Diaconescu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Duiliu Diaconescu', 18)}}的其他基金

Algebraic Geometry and Moduli Spaces in String Theory
弦论中的代数几何和模空间
  • 批准号:
    1501612
  • 财政年份:
    2015
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
D-BRANE MODULI SPACES IN MATHEMATICS AND PHYSICS
数学和物理中的 D 膜模空间
  • 批准号:
    0854757
  • 财政年份:
    2009
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Continuing Grant
Geometry and Vacuum Structure in String Theory
弦理论中的几何和真空结构
  • 批准号:
    0555374
  • 财政年份:
    2006
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
  • 批准号:
    11981240404
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
  • 批准号:
    20602003
  • 批准年份:
    2006
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
  • 批准号:
    2401360
  • 财政年份:
    2024
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
  • 批准号:
    2414922
  • 财政年份:
    2024
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
Conference: CAAGTUS (Commutative Algebra and Algebraic Geometry in TUcSon)
会议:CAAGTUS(TUcSon 中的交换代数和代数几何)
  • 批准号:
    2412921
  • 财政年份:
    2024
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
  • 批准号:
    2302262
  • 财政年份:
    2023
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
Combinatorics, Algebra, and Geometry of Simplicial Complexes
单纯复形的组合学、代数和几何
  • 批准号:
    2246399
  • 财政年份:
    2023
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Continuing Grant
Commutative algebra in algebraic geometry and algebraic combinatorics
代数几何和代数组合中的交换代数
  • 批准号:
    2246962
  • 财政年份:
    2023
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
  • 批准号:
    2314082
  • 财政年份:
    2023
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
  • 批准号:
    2302263
  • 财政年份:
    2023
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
Multigraded commutative algebra and the geometry of syzygies
多级交换代数和 syzygies 几何
  • 批准号:
    2302373
  • 财政年份:
    2023
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了