Interfacial directed assembly and attachment of interconnected nanoparticle networks

互连纳米粒子网络的界面定向组装和附着

基本信息

  • 批准号:
    1803878
  • 负责人:
  • 金额:
    $ 37.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Nanoparticles are particles with diameters roughly one thousandth the width of a human hair. This award supports research to investigate how nanoparticles assemble and attach at the surface of a fluid. The process is not unlike how some fine powders can form a layer that floats on top of the surface of quiescent water. Nanoparticle building blocks with programmable size, shape, and composition have become available thanks to recent advances in chemistry. Connecting these building blocks to each other to form "sheets" can give rise to new classes of materials and devices with emergent properties that have intrigued scientists and engineers alike. Unfortunately, assembly instructions are not yet available. This project will close this knowledge gap with a combination of experiments and computer models. This synergistic approach will unveil key details of the mechanism by which the building blocks self-assemble and attach. Hence, the results will lead to strategies to design new building blocks that assemble into desirable patterns with minimal defects. This project will produce new knowledge of scientific and societal importance and may lead to the development of new nanostructured materials. Graduate students will receive extensive training in advanced experimental and modeling approaches, and research opportunities will be provided for undergraduates. Interactive learning modules for local K-12 programs will also be developed.The combination of self-assembly and directed attachment of colloidal nanoparticles at fluid interfaces presents scientifically interesting and technologically important research challenges. Remarkable strides have been made in the synthesis of polyhedral nanoparticle building blocks with precisely defined shapes and their self-assembly into highly ordered superstructures. Recent advances have revealed intriguing synergies between interfacial self-assembly and directed epitaxial attachment into ordered and connected superstructures. Access to superstructures with programmable symmetry opens new opportunities to create materials with properties by design. The main goal of this work is to attain a better understanding of the basic kinetic and thermodynamic factors governing the interplay of self-assembly and directed-attachment. The investigators hypothesize that the key to predicting and creating coupled assemblies with programmable structures lies in understanding and controlling the nanoparticle orientation at the fluid interface as well as the interactions among particles. The nanoparticle orientation at the liquid-liquid interface and subsequent directed attachment is a complex function of the interfacial energies, the nature of multi-particle interactions and the coupled dynamics of interfacial nanoparticle diffusion, ligand displacement from the nanoparticle surface and epitaxial fusion of adjacent nanoparticles through mutually exposed facets. The mechanism describing how the nanoparticle assembly transforms into an epitaxially connected superstructure presents an interesting unresolved scientific question, and competing hypotheses will be tested via a combination of experiments and simulations. In fact, this provides both a challenge and an opportunity to closely integrate in-situ X-ray structure analysis with multi-scale modeling. The proposal presents a hypothesis-driven collaborative approach with two objectives that aim to understand: (1) how specific nanoparticle superlattice polymorphs assemble at fluid interfaces and (2) how directed attachment can transform the assembled superlattice into an epitaxially connected quasi-2D solid.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
纳米颗粒是直径大约是人头发宽度的颗粒。 该奖项支持研究,以研究纳米颗粒如何在流体表面组装和附着。 该过程与某些细粉末如何形成在静态水表面顶部的层没有什么不同。 由于最近的化学进展,具有可编程尺寸,形状和组成的纳米颗粒构建块已获得。将这些构建块彼此连接起来形成“床单”,可能会产生新的材料和设备,并具有引起科学家和工程师的新兴特性。不幸的是,尚无组装说明。该项目将结合实验和计算机模型的组合来缩小这一知识差距。 这种协同方法将揭示构件阻止自组装和附加机制的关键细节。 因此,结果将导致设计新的构建块的策略,这些构建块组装成最小的缺陷的理想模式。该项目将产生有关科学和社会重要性的新知识,并可能导致新的纳米结构材料的发展。研究生将接受高级实验和建模方法的广泛培训,并为大学生提供研究机会。 还将开发针对本地K-12程序的交互式学习模块。自我组装和胶体纳米颗粒在流体接口上的​​固定依恋的结合提出了科学有趣且在技术上重要的研究挑战。在合成具有精确定义形状的多面体纳米颗粒构建块的合成中,已经取得了显着的进步,它们的自组装成高度有序的上层建筑。最近的进步揭示了界面自我组装和定向外延依恋之间令人着迷的协同作用。使用可编程对称性的上层建筑访问可以为使用设计属性创建材料的新机会。这项工作的主要目的是更好地理解管理自组装和定向跟踪相互作用的基本动力学和热力学因素。研究人员假设与可编程结构预测和创建耦合组件的关键在于理解和控制流体界面处的纳米颗粒方向以及粒子之间的相互作用。液态液体界面和随后的定向附件处的纳米颗粒取向是界面能量的复杂功能,多粒子相互作用的性质以及界面纳米颗粒扩散的耦合动力学,结合纳米颗粒表面和偶像外部融合的偶像构造的互联体位移。描述纳米颗粒组件如何转化为外延连接的上层建筑的机制提出了一个有趣的未解决的科学问题,并且将通过实验和模拟的结合来测试竞争的假设。实际上,这既提供了一个挑战,也是与多尺度建模紧密整合原位X射线结构分析的机会。该提议提出了一种以假设为导向的协作方法,其目的有两个目标,旨在理解:(1)特定的纳米颗粒超晶状体超晶状体多晶型物如何在流体界面聚集在流体界面上,(2)有方向的附件如何将组装的超级峰值转化为通过表达相互连接的Quasi-2D Solide的支持,并反映了nsf的基础。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Implicit-Solvent Model for the Interfacial Configuration of Colloidal Nanoparticles and Application to the Self-Assembly of Truncated Cubes
Mechanistic Insights into Superlattice Transformation at a Single Nanocrystal Level Using Nanobeam Electron Diffraction
  • DOI:
    10.1021/acs.nanolett.0c01579
  • 发表时间:
    2020-07-08
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    daSilva, Jessica Cimada;Smeaton, Michelle A.;Hanrath, Tobias
  • 通讯作者:
    Hanrath, Tobias
Ligand Interactions and Nanoparticle Shapes Guide the Pathways toward Interfacial Self-Assembly
  • DOI:
    10.1021/acs.langmuir.1c02804
  • 发表时间:
    2022-01-27
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Gupta, U.;Escobedo, F. A.
  • 通讯作者:
    Escobedo, F. A.
Fundamental Processes and Practical Considerations of Lead Chalcogenide Mesocrystals Formed via Self-Assembly and Directed Attachment of Nanocrystals at a Fluid Interface
通过纳米晶体在流体界面自组装和定向附着形成铅硫族化物介晶的基本过程和实际考虑
  • DOI:
    10.1021/acs.chemmater.1c02910
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Cimada daSilva, Jessica;Balazs, Daniel M.;Dunbar, Tyler A.;Hanrath, Tobias
  • 通讯作者:
    Hanrath, Tobias
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tobias Hanrath其他文献

Tobias Hanrath的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tobias Hanrath', 18)}}的其他基金

I-Corps: Modular electrolyzers to transform methane to liquids
I-Corps:将甲烷转化为液体的模块化电解槽
  • 批准号:
    2330685
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Establishing the synthesis/structure relationship of molybdenum/lead chalcogenide quantum dot mesocrystals
建立钼/铅硫族化物量子点介晶的合成/结构关系
  • 批准号:
    2206122
  • 财政年份:
    2022
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
I-Corps: Light patternable mesoporous material
I-Corps:可光图案介孔材料
  • 批准号:
    1934301
  • 财政年份:
    2019
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Integrating Directed Assembly and 3D Printing to Enable Advanced Nanomanufacturing Across Multiple Length Scales
集成定向组装和 3D 打印,实现跨多个长度尺度的先进纳米制造
  • 批准号:
    1635433
  • 财政年份:
    2016
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
UNS: Nanowire Growth on inductively heated metal films: new reaction diagnostic and pathways towards roll-to-roll processing
UNS:感应加热金属薄膜上的纳米线生长:新的反应诊断和卷对卷加工途径
  • 批准号:
    1510024
  • 财政年份:
    2015
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
CAREER: Creating Confined-but-Coupled Nanostructures to Balance Quantum Confinement and Quantum Coupling
职业:创建受限但耦合的纳米结构以平衡量子限制和量子耦合
  • 批准号:
    1056943
  • 财政年份:
    2011
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Inorganic Distributed Nanocrystal Heterojuntion Solar Cells
无机分布式纳米晶异质结太阳能电池
  • 批准号:
    0828703
  • 财政年份:
    2008
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant

相似国自然基金

基于肿瘤微环境乳酸控制的纳米杂合工程菌精准指导CD47纳米抗体用于结肠癌免疫治疗研究
  • 批准号:
    32301187
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
靶向P2X7R受体PET显像并指导变构调控分子抑制神经炎症改善阿尔茨海默病小鼠认知功能研究
  • 批准号:
    82372004
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
脑缺血后神经元活性调控突触PS外翻指导小胶质细胞C1q依赖的突触修剪参与功能康复的机制研究
  • 批准号:
    82372577
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
基于ELF5分子机制研究指导的三阴乳腺癌精准治疗方法构建及应用
  • 批准号:
    32371539
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
机器学习指导二维TMCs横向异质结可控合成及其室温气体传感器
  • 批准号:
    62374134
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

International Retroviral Symposium: Assembly, Maturation and Uncoating
国际逆转录病毒研讨会:组装、成熟和脱壳
  • 批准号:
    10762858
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
Kinetochore Assembly and Regulation
着丝粒组装和调控
  • 批准号:
    10717202
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
FuSe: Precise Sequence Specific Block Copolymers for Directed Self-Assembly - Co-Design of Lithographic Materials for Pattern Quality, Scaling, and Manufacturing
FuSe:用于定向自组装的精确序列特定嵌段共聚物 - 用于图案质量、缩放和制造的光刻材料的协同设计
  • 批准号:
    2329133
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
A universal approach for determining three-dimensional RNA structures
确定三维 RNA 结构的通用方法
  • 批准号:
    10724848
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
Personalized, antigen-directed immunotherapy delivered to lymph nodes
递送至淋巴结的个性化抗原导向免疫疗法
  • 批准号:
    10744599
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了