Uncovering how plant pathogens take control of chloroplast protein import to limit chloroplast-mediated immunity
揭示植物病原体如何控制叶绿体蛋白输入以限制叶绿体介导的免疫
基本信息
- 批准号:BB/X000192/1
- 负责人:
- 金额:$ 76.77万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
A key global challenge of our era is to deliver increased agricultural yields that have resilience to stress and disease. This imperative arises because of rapid human population growth (set to exceed 9 billion by 2050) and anthropogenic climate change, which together place ever increasing pressures on food security and natural resources. To meet this challenge, it will be crucial to develop improved crop varieties. Through research on the model plant Arabidopsis, we previously made important breakthroughs that are pertinent in this regard: We discovered a gene called SP1 that controls diverse aspects of plant growth via a process named "CHLORAD"; and we showed how SP1 is needed for plants to mount effective responses to adverse environmental conditions like drought and salinity (so-called abiotic stresses).Our latest results (which are unpublished but presented here) uncover another, vitally important function of SP1, in plant immunity - i.e., in the way plants defend themselves against the threat of disease posed by plant pathogens. In this project, we will perform experiments to understand this new function of SP1 in detail; and, in doing so, we will shed significant new light on the mechanisms of plant immunity.The SP1 gene controls the formation and operation of structures inside plant cells called chloroplasts. Chloroplasts are normal cellular constituents (i.e., organelles), and they define plants. They contain the green pigment chlorophyll and are responsible for photosynthesis, which harnesses sunlight to power the activities of the cell. As photosynthesis is the only significant mechanism of energy-input into the living world, chloroplasts are of huge importance, not just to plants but to all life on Earth. Chloroplasts also have vital roles in plant immunity, and so are ideal targets for engineering disease resistance in crops.Chloroplasts are composed of thousands of different proteins, most of which are encoded by genes in the cell's nucleus and so are synthesized outside of the chloroplast in the cellular matrix known as the cytosol. As chloroplasts are each surrounded by a double-membrane envelope, sophisticated machinery is needed to bring about the import of these proteins into the chloroplast. This comprises two molecular machines, one in each membrane, called TOC (for "Translocon at the Outer membrane of Chloroplasts") and TIC. Each machine is composed of several different proteins that work cooperatively.The SP1 gene encodes a type of regulatory factor called a "ubiquitin E3 ligase". Such regulators work by labelling-up unwanted proteins to target them for removal. The SP1 E3 ligase mediates the removal of certain TOC components, and this in turn influences which proteins are imported by chloroplasts. Such control enables the plant to alter its chloroplasts' functions during development and in adaptation to stress. During abiotic stress, SP1 inhibits the import of photosynthetic machinery components, which limits photosynthesis. This may seem counterproductive, but actually under stress conditions photosynthesis can overproduce toxic chemicals called "ROS". Thus, by turning down photosynthesis at these times, the plants are more likely to survive.While ROS are harmful if overproduced, they do have a beneficial role to play as signals during immunity, by orchestrating anti-pathogen defences. Our results reveal that pathogens have evolved mechanisms to promote SP1 activity during infection, to limit photosynthesis and so reduce synthesis of defence-promoting ROS. In effect, the pathogens subvert the plant's system for dealing with abiotic stress. We will study the role of SP1 in immunity, and elucidate how pathogens affect SP1 activity. We will also examine the immunity-related functions of SP1 with regard to different pathogens, and in crop plants. Overall, we will enhance our understanding of plant immunity, which is key to the development of crops with improved disease resistance.
我们这个时代的一个关键的全球挑战是提高农业产量,使其能够抵御压力和疾病。这一必要性的产生是因为人口迅速增长(到2050年将超过90亿)和人为气候变化,这两个因素加在一起对粮食安全和自然资源造成越来越大的压力。为了应对这一挑战,开发改良作物品种至关重要。通过对模式植物拟南芥的研究,我们在这方面取得了重要突破:我们发现了一个名为SP1的基因,它通过一个名为“CHLORAD”的过程控制植物生长的各个方面;我们展示了植物如何需要SP1来对干旱和盐碱等不利环境条件做出有效反应,我们的最新结果(未发表,但在这里提出)揭示了SP1在植物免疫中的另一个至关重要的功能-即,植物保护自己免受植物病原体带来的疾病威胁。在本项目中,我们将通过实验来详细了解SP1的这种新功能,从而为植物免疫机制提供重要的新见解。SP1基因控制着植物细胞内称为叶绿体的结构的形成和运作。叶绿体是正常的细胞成分(即,细胞器),它们定义植物。它们含有绿色色素叶绿素,负责光合作用,光合作用利用阳光为细胞的活动提供动力。由于光合作用是能量输入到生命世界的唯一重要机制,叶绿体不仅对植物而且对地球上的所有生命都非常重要。叶绿体在植物免疫中也有重要作用,因此是作物抗病工程的理想目标。叶绿体由数千种不同的蛋白质组成,其中大部分由细胞核中的基因编码,因此在叶绿体外的细胞基质(称为细胞质)中合成。由于每个叶绿体都被一个双层膜包围,需要复杂的机器将这些蛋白质导入叶绿体。这包括两个分子机器,一个在每个膜上,称为TOC(“叶绿体外膜上的转位子”)和TIC。每个机器都由几种不同的蛋白质组成,它们协同工作。SP1基因编码一种称为“泛素E3连接酶”的调节因子。这些调节器通过标记不需要的蛋白质来清除它们。SP1 E3连接酶介导某些TOC组分的去除,这反过来又影响哪些蛋白质被叶绿体输入。这种控制使植物能够在发育和适应胁迫期间改变其叶绿体的功能。在非生物胁迫期间,SP1抑制光合机械组分的输入,从而限制光合作用。这看起来可能适得其反,但实际上在压力条件下,光合作用会过度产生有毒化学物质,称为“ROS”。因此,通过在这些时候关闭光合作用,植物更有可能存活下来。虽然ROS如果过度产生是有害的,但它们确实在免疫过程中扮演着有益的角色,通过协调抗病原体防御。我们的研究结果表明,病原体已经进化出在感染过程中促进SP1活性的机制,限制光合作用,从而减少促进防御的ROS的合成。实际上,病原体破坏了植物应对非生物胁迫的系统。我们将研究SP1在免疫中的作用,并阐明病原体如何影响SP1活性。我们还将研究SP1对不同病原体和作物的免疫相关功能。总的来说,我们将加强对植物免疫的理解,这是开发具有更好抗病性的作物的关键。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Jarvis其他文献
Nursing and midwifery students' perceptions of spirituality, spiritual care, and spiritual care competency: A prospective, longitudinal, correlational European study
- DOI:
10.1016/j.nedt.2018.05.002 - 发表时间:
2018-08-01 - 期刊:
- 影响因子:
- 作者:
Linda Ross;Wilfred McSherry;Tove Giske;René van Leeuwen;Annemiek Schep-Akkerman;Tiburtius Koslander;Jenny Hall;Vibeke Østergaard Steenfeldt;Paul Jarvis - 通讯作者:
Paul Jarvis
Intracerebral Hemorrhage in a Young Urban Population: Etiologies and Outcomes in Patients 50 and Younger
- DOI:
10.1016/j.jstrokecerebrovasdis.2019.07.011 - 发表时间:
2019-10-01 - 期刊:
- 影响因子:
- 作者:
Aron Gedansky;Paul Jarvis;Daohai Yu;Xiaoning Lu;Terry Heiman-Patterson;Guillermo Linares - 通讯作者:
Guillermo Linares
Integration of CAPS markers into the RFLP map generated using recombinant inbred lines of Arabidopsis thaliana
- DOI:
10.1007/bf00023565 - 发表时间:
1994-02-01 - 期刊:
- 影响因子:3.800
- 作者:
Paul Jarvis;Clare Lister;Veronique Szabo;Caroline Dean - 通讯作者:
Caroline Dean
The Arabidopsis Book(control of plastid development, protein import, division and inheritance.)
拟南芥书(质体发育、蛋白质输入、分裂和遗传的控制。)
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Wataru Sakamoto;Shin-ya Miyagishima;Paul Jarvis - 通讯作者:
Paul Jarvis
Biogenesis and homeostasis of chloroplasts and other plastids
叶绿体和其他质体的生物发生与内稳态
- DOI:
10.1038/nrm3702 - 发表时间:
2013-11-22 - 期刊:
- 影响因子:90.200
- 作者:
Paul Jarvis;Enrique López-Juez - 通讯作者:
Enrique López-Juez
Paul Jarvis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Jarvis', 18)}}的其他基金
Defining the role of SUMO in regulating chloroplast biogenesis and functions
定义 SUMO 在调节叶绿体生物发生和功能中的作用
- 批准号:
BB/W015021/1 - 财政年份:2023
- 资助金额:
$ 76.77万 - 项目类别:
Research Grant
Defining the scope and components of ubiquitin-dependent chloroplast-associated protein degradation
定义泛素依赖性叶绿体相关蛋白降解的范围和组成部分
- 批准号:
BB/V007300/1 - 财政年份:2021
- 资助金额:
$ 76.77万 - 项目类别:
Research Grant
Application of the plastidic E3 ligase SP1 in crop improvement, using tomato and rice as models
质体E3连接酶SP1在作物改良中的应用(以番茄和水稻为模型)
- 批准号:
BB/R005591/1 - 财政年份:2018
- 资助金额:
$ 76.77万 - 项目类别:
Research Grant
Elucidating the role of SP2 and the SP1-SP2 machinery in chloroplast protein degradation
阐明 SP2 和 SP1-SP2 机制在叶绿体蛋白质降解中的作用
- 批准号:
BB/R016984/1 - 财政年份:2018
- 资助金额:
$ 76.77万 - 项目类别:
Research Grant
Chloroplast-Associated Degradation (CHLORAD): Molecular definition of a ubiquitin-dependent system for plastid protein removal in plants
叶绿体相关降解 (CHLORAD):植物中质体蛋白去除泛素依赖性系统的分子定义
- 批准号:
BB/R009333/1 - 财政年份:2018
- 资助金额:
$ 76.77万 - 项目类别:
Research Grant
Role of the chloroplast ubiquitin E3 ligase SP1 in abiotic stress tolerance in plants
叶绿体泛素 E3 连接酶 SP1 在植物非生物胁迫耐受中的作用
- 批准号:
BB/N006372/1 - 财政年份:2016
- 资助金额:
$ 76.77万 - 项目类别:
Research Grant
Investigating the function of a ClpC/Hsp100-type chaperone in chloroplast preprotein import
研究 ClpC/Hsp100 型伴侣在叶绿体前蛋白输入中的功能
- 批准号:
BB/J017256/2 - 财政年份:2013
- 资助金额:
$ 76.77万 - 项目类别:
Research Grant
Investigating the roles of Arabidopsis STIC1 and STIC2 in chloroplast protein transport
研究拟南芥 STIC1 和 STIC2 在叶绿体蛋白转运中的作用
- 批准号:
BB/J009369/2 - 财政年份:2013
- 资助金额:
$ 76.77万 - 项目类别:
Research Grant
Control of plastid biogenesis by the ubiquitin-proteasome system
泛素-蛋白酶体系统对质体生物发生的控制
- 批准号:
BB/K018442/1 - 财政年份:2013
- 资助金额:
$ 76.77万 - 项目类别:
Research Grant
Investigating the roles of Arabidopsis STIC1 and STIC2 in chloroplast protein transport
研究拟南芥 STIC1 和 STIC2 在叶绿体蛋白转运中的作用
- 批准号:
BB/J009369/1 - 财政年份:2012
- 资助金额:
$ 76.77万 - 项目类别:
Research Grant
相似海外基金
Deciphering plant stress memory: the exploration of how DNA methylation and the rhizosphere microbiome control stress memory in plants
解读植物逆境记忆:探索DNA甲基化和根际微生物如何控制植物逆境记忆
- 批准号:
BB/Z514810/1 - 财政年份:2024
- 资助金额:
$ 76.77万 - 项目类别:
Fellowship
HOW MEGA-DIVERSE ARE ASIAN RAINFORESTS? DEVELOPMENT OF INNOVATIVE AI MODELS TO UNDERSTAND TROPICAL PLANT BIODIVERSITY
亚洲雨林的多样性如何?
- 批准号:
2887670 - 财政年份:2023
- 资助金额:
$ 76.77万 - 项目类别:
Studentship
NSF Postdoctoral Fellowship in Biology: How will climate change influence how endophytes decompose plant litter?
NSF 生物学博士后奖学金:气候变化将如何影响内生菌分解植物凋落物的方式?
- 批准号:
2209329 - 财政年份:2023
- 资助金额:
$ 76.77万 - 项目类别:
Fellowship Award
Collaborative Research: How to manipulate a plant? Testing for conserved effectors and plant responses in gall induction and growth using a multi-species comparative approach.
合作研究:如何操纵植物?
- 批准号:
2305880 - 财政年份:2023
- 资助金额:
$ 76.77万 - 项目类别:
Standard Grant
Smart control of crop diseases: how can we best combine fungicides and plant resistance genes?
作物病害智能防治:杀菌剂与植物抗性基因如何最佳结合?
- 批准号:
2886359 - 财政年份:2023
- 资助金额:
$ 76.77万 - 项目类别:
Studentship
How Nutrients Shape Plant Roots: A Spatial Analysis of the Signaling Networks that Control Root Responses to Phosphorus
养分如何塑造植物根部:控制根部对磷反应的信号网络的空间分析
- 批准号:
2888777 - 财政年份:2023
- 资助金额:
$ 76.77万 - 项目类别:
Studentship
Quantifying how host genotype and microbiome composition combine to influence susceptibility to plant disease.
量化宿主基因型和微生物组组成如何结合影响植物病害的易感性。
- 批准号:
BB/W020378/1 - 财政年份:2023
- 资助金额:
$ 76.77万 - 项目类别:
Research Grant
How to build a protein factory? Linking structure and function of the plant endoplasmic reticulum
如何建造蛋白质工厂?
- 批准号:
BB/X006417/1 - 财政年份:2023
- 资助金额:
$ 76.77万 - 项目类别:
Research Grant
CAREER: How do rhizosphere associated microorganisms and plant host interact to regulate soil microbial processes?
职业:根际相关微生物和植物宿主如何相互作用来调节土壤微生物过程?
- 批准号:
2238633 - 财政年份:2023
- 资助金额:
$ 76.77万 - 项目类别:
Continuing Grant
How do soluble enzymes from microbes degrade insoluble plant cell walls?
微生物的可溶性酶如何降解不溶性植物细胞壁?
- 批准号:
2888684 - 财政年份:2023
- 资助金额:
$ 76.77万 - 项目类别:
Studentship