Thermodynamics of nanomagnetic devices driven by spin currents
自旋电流驱动的纳米磁性器件的热力学
基本信息
- 批准号:1804198
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Electron spin is a promising medium for the transmission, processing, and storage of information in future electronic devices. In some of the pursued implementations, information is carried by coherent spin dynamics in magnetic materials through the spin waves, which can be generated by injecting spin current into nanomagnets. It is now well known that many different spin wave modes are simultaneously produced by spin current injection, but their spectral distribution, or the mechanisms controlling it, are not well known, hindering the progress in achieving coherent spin-based device operation. The proposed Project will develop new experimental approaches enabling the characterization of spectral distribution of spin waves generated by spin current, and establish the methods to control it. The possibility that the spin waves form a quasi-equilibrium distribution, described by the effective thermodynamic parameters - temperature and chemical potential will be tested. This will allow the proposed research to identify the fundamental mechanisms underlying the formation of dynamical states in nanomagnetic systems driven by spin currents. The resulting ability to achieve highly coherent magnetization dynamics will contribute to the progress in the implementation of efficient spin-based devices. The project will contribute to the burgeoning Engineering Sciences degree at Emory University, by developing training modules for the new hands-on experimental Materials Science course, and to the highly successful Atlanta Science Festival, by developing educational demos for the general public.The main goal of the Project is to establish the relation between the dynamical and the thermodynamic characteristics of nanomagnetic systems driven by spin current, which will enable efficient engineering and optimization of these characteristics for nanodevice applications. Magneto-optical micro-focus Brillouin Light spectroscopy technique will be utilized to determine the spectral distribution of spin wave quanta known as the magnons. To achieve a broad spectral sensitivity of the technique, momentum-space squeezing and plasmonic effects will be utilized to concentrate the probing light into deep sub-wavelength regions. The obtained results will be used to quantitatively test the hypothesis that nanomagnetic systems driven by spin current can form a quasi-equilibrium state characterized by the effective thermodynamic parameters such as chemical potential and temperature. This will allow the project to establish the relationship between the previously achieved coherent spin current-induced dynamics and Bose-Einstein condensation, a coherent dynamical state spontaneously formed when the chemical potential becomes equal to the lowest magnon energy. By establishing this relation, number of fundamentally and practically important questions will be addressed, such as the role of different dynamical spectral modes play in a magnetic systems in the formation of coherent states, what nonlinear magnon-magnon interactions prevent or facilitate the formation of these states, can they be controlled by engineering the dynamical spectrum, is there a possibility to achieve Bose-Einstein condensation driven by spin current and can the condensate be formed in a large volume of the magnetic system, or is it always localized in nanoscale regions. By addressing these questions, an unprecedented level of understanding of dynamical magnetization states, and the ability to control them for spin-based device applications, will be achieved.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在未来的电子设备中,电子自旋是一种很有前途的传输、处理和存储信息的介质。在一些所追求的实现中,信息通过自旋波在磁性材料中传递,自旋波可以通过向纳米磁铁中注入自旋电流产生。自旋电流注入可以同时产生多种不同的自旋波模式,但其谱分布及其控制机制尚不清楚,这阻碍了自旋器件相干操作的实现。本计划将发展新的实验方法,以表征自旋电流产生的自旋波的光谱分布,并建立控制自旋电流的方法。由有效热力学参数-温度和化学势描述的自旋波形成准平衡分布的可能性将被测试。这将使所提出的研究能够确定由自旋电流驱动的纳米磁系统中动态状态形成的基本机制。由此产生的实现高相干磁化动力学的能力将有助于实现高效自旋基器件的进展。该项目将通过为新的动手实验材料科学课程开发培训模块,为埃默里大学迅速发展的工程科学学位做出贡献,并通过为公众开发教育演示,为非常成功的亚特兰大科学节做出贡献。该项目的主要目标是建立由自旋电流驱动的纳米磁系统的动力学和热力学特性之间的关系,这将使纳米器件应用的这些特性的有效工程和优化成为可能。磁光微焦点布里渊光谱学技术将用于确定自旋波量子的光谱分布,即磁振子。为了实现该技术的广谱灵敏度,将利用动量空间压缩和等离子体效应将探测光集中到深亚波长区域。所得结果将用于定量验证自旋电流驱动的纳米磁系统可以形成以化学势和温度等有效热力学参数为特征的准平衡态的假设。这将使该项目能够建立先前实现的自旋电流诱导的相干动力学和玻色-爱因斯坦凝聚之间的关系,当化学势等于最低的磁振子能量时,一种自发形成的相干动力学状态。通过建立这种关系,将解决许多基本和实际重要的问题,例如不同的动力谱模式在磁系统形成相干态中的作用,非线性磁振子-磁振子相互作用如何阻止或促进这些态的形成,它们是否可以通过工程动力谱来控制?是否有可能实现由自旋电流驱动的玻色-爱因斯坦凝聚,以及这种凝聚是否可以在大体积的磁系统中形成,或者它是否总是局限于纳米级区域。通过解决这些问题,将实现对动态磁化状态的前所未有的理解,以及控制它们用于基于自旋的器件应用的能力。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Controlled nonlinear magnetic damping in spin-Hall nano-devices
- DOI:10.1038/s41467-019-13246-7
- 发表时间:2019-11-18
- 期刊:
- 影响因子:16.6
- 作者:Divinskiy, Boris;Urazhdin, Sergei;Demidov, Vladislav E.
- 通讯作者:Demidov, Vladislav E.
Nanoscale Transient Magnetization Gratings Created and Probed by Femtosecond Extreme Ultraviolet Pulses
- DOI:10.1021/acs.nanolett.0c05083
- 发表时间:2021-03-16
- 期刊:
- 影响因子:10.8
- 作者:Ksenzov, Dmitriy;Maznev, Alexei A.;Gutt, Christian
- 通讯作者:Gutt, Christian
Relation between unidirectional spin Hall magnetoresistance and spin current-driven magnon generation
- DOI:10.1063/1.5044737
- 发表时间:2018-06
- 期刊:
- 影响因子:4
- 作者:I. Borisenko;I. Borisenko;V. Demidov;S. Urazhdin;A. Rinkevich;S. Demokritov
- 通讯作者:I. Borisenko;I. Borisenko;V. Demidov;S. Urazhdin;A. Rinkevich;S. Demokritov
Memristive functionality based on viscous magnetization dynamics
基于粘性磁化动力学的忆阻功能
- DOI:10.1063/5.0092641
- 发表时间:2022
- 期刊:
- 影响因子:3.2
- 作者:Ivanov, Sergei;Urazhdin, Sergei
- 通讯作者:Urazhdin, Sergei
Ideal memristor based on viscous magnetization dynamics driven by spin torque
- DOI:10.1063/5.0018411
- 发表时间:2020-06
- 期刊:
- 影响因子:4
- 作者:Guanxiong Chen;S. Ivanov;S. Urazhdin
- 通讯作者:Guanxiong Chen;S. Ivanov;S. Urazhdin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sergei Urazhdin其他文献
Stability criterion for critical points of a model in micromagnetics
- DOI:
10.1134/s0081543812060168 - 发表时间:
2012-10-12 - 期刊:
- 影响因子:0.400
- 作者:
Lydia Novozhilova;Sergei Urazhdin - 通讯作者:
Sergei Urazhdin
Dynamical Coupling Between Ferromagnets Due to Spin Transfer Torque
- DOI:
10.1103/physrevb.78.060405 - 发表时间:
2008-02 - 期刊:
- 影响因子:0
- 作者:
Sergei Urazhdin - 通讯作者:
Sergei Urazhdin
Sergei Urazhdin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sergei Urazhdin', 18)}}的其他基金
Ideal memristor based on the spin liquid state in magnetic heterostructures
基于磁性异质结构自旋液态的理想忆阻器
- 批准号:
2005786 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Active microwave nanodevices based on nonlocal spin injection
基于非局域自旋注入的有源微波纳米器件
- 批准号:
1503878 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Electrical control of nontrivial textures in magnetic nanostructures
磁性纳米结构中重要纹理的电控制
- 批准号:
1504449 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Collaborative Research: Microwave Auto-Oscillators Driven by Pure Spin Currents
合作研究:纯自旋电流驱动的微波自动振荡器
- 批准号:
1305586 - 财政年份:2013
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Development of tunable nanomagnetic microwave oscillators and circuits
可调谐纳米磁性微波振荡器和电路的开发
- 批准号:
1218419 - 财政年份:2011
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CAREER: Current-Induced Effects in Magnetic Nanostructures and Development of Science Education
职业:磁性纳米结构的电流感应效应和科学教育的发展
- 批准号:
1218414 - 财政年份:2011
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Development of tunable nanomagnetic microwave oscillators and circuits
可调谐纳米磁性微波振荡器和电路的开发
- 批准号:
0967195 - 财政年份:2010
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CAREER: Current-Induced Effects in Magnetic Nanostructures and Development of Science Education
职业:磁性纳米结构的电流感应效应和科学教育的发展
- 批准号:
0747609 - 财政年份:2008
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
相似海外基金
Infrared sensor for screening of emerging contaminants in water
用于筛查水中新兴污染物的红外传感器
- 批准号:
10482183 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Nanomagnetic-guided tau-centric protein transport in neurons
纳米磁引导神经元中以 tau 为中心的蛋白质运输
- 批准号:
10187076 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Point-of-Care Microfluidic Biochip for Biomarkers Monitoring for Contributing in Early Sepsis Diagnosis
用于生物标志物监测的护理点微流控生物芯片有助于早期脓毒症诊断
- 批准号:
10462484 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Multifunctional Nanoplatforms-Based Capture and identification of Circulating Tumor Biomarkers for Early Diagnosis of Lung Cancer
基于多功能纳米平台的循环肿瘤生物标志物的捕获和鉴定,用于肺癌的早期诊断
- 批准号:
10402411 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Multifunctional Nanoplatforms-Based Capture and identification of Circulating Tumor Biomarkers for Early Diagnosis of Lung Cancer
基于多功能纳米平台的循环肿瘤生物标志物的捕获和鉴定用于肺癌的早期诊断
- 批准号:
10256728 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Nanomagnetic isolation and sensing for mobile HIV-1 self-testing
用于移动 HIV-1 自检的纳米磁隔离和传感
- 批准号:
10663625 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Nanomagnetic isolation and sensing for mobile HIV-1 self-testing
用于移动 HIV-1 自检的纳米磁隔离和传感
- 批准号:
10002182 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Nanomagnetic isolation and sensing for mobile HIV-1 self-testing
用于移动 HIV-1 自检的纳米磁隔离和传感
- 批准号:
10224709 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
A nanomagnetic platform technology to characterize traumatic brain injury using brain derived extracellular vesicles
使用脑源性细胞外囊泡表征创伤性脑损伤的纳米磁性平台技术
- 批准号:
9788528 - 财政年份:2018
- 资助金额:
$ 36万 - 项目类别:
Novel nanomagnetic structures, materials and devices
新型纳米磁性结构、材料和器件
- 批准号:
RGPIN-2014-05675 - 财政年份:2018
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual