Chemical and structural design of inorganic-organic layers for stabilized Li anodes

稳定锂阳极无机-有机层的化学和结构设计

基本信息

  • 批准号:
    1804247
  • 负责人:
  • 金额:
    $ 33.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

This project will generate fundamental knowledge and identify design principles for developing improved battery anodes based on lithium metal. This knowledge is critical for enabling rechargeable high energy density lithium electrode batteries for electric vehicle-based transportation and for compact storage of renewably generated electricity. This work will advance understanding of how this active material forms beneficial, ionically-conductive material films that have the potential to impart improved stability, cycling efficiency and lifetime. The insights developed in this work can be used to design new fabrication procedures and improved interfaces for lithium anodes with higher degrees of stability, which is currently a key issue with this technology. This work could lead to lighter, longer-lasting and more compact transportation batteries, which supports improved national energy sustainability, reduced air pollution, and a potential path to more widespread electric vehicle adoption. The educational and outreach plans will leverage and add to existing programs at the Massachusetts Institute of Technology to benefit K-12 students and improve public literacy related to energy storage, batteries and electrochemistry within the Cambridge and Greater Boston areas. This project specifically entails development of new educational materials and teaching modules to support public school science teachers in teaching energy conversion and storage concepts, and workshops to be hosted on MIT campus in collaboration with the MIT Edgerton Center and MIT Museum. The PI also plans inclusion of Greater Boston community college students in summer research.The rechargeable Li electrode is an essential element of the most promising, "beyond Li-ion" advanced battery chemistries. However, Li electrodes do not currently cycle with acceptable Coulombic efficiency, safety, or lifetime. This project investigates how oxide and fluoride gases interact with Li metal, and impart chemical, morphological, and electrochemical properties favorable to formation of an artificial solid electrolyte interphase (SEI). This research includes systematic studies of Li reactions with gases that yield ionic compounds on the Li surface, allowing for independent tuning and study of the formed inorganic interface. By exploring three gases that are projected to yield a comprehensive set of distinct inorganic-layer compositions, this work will contribute new fundamental understanding of how the SEI chemical, structural and electronic properties govern performance, and identify optimized inorganic-layer chemistries that can drive future additive development and optimization. The major tasks that comprise the research plan are: (1) Determine the chemical and structural properties of films formed when fresh Li reacts in gas environments, using X-ray Photoelectron Spectroscopy, Fourier-Transform Infrared Spectroscopy, electron microscopy and thermal/microstructural modeling; (2) Perform cycling measurements and quantify key electrochemical metrics of Coulombic efficiency, cycle life, and short-circuit time; (3) Measure the physical and electrochemical properties of the reactant gas, including reaction kinetics, transport parameters, and electrochemical activity within battery environments, which are relevant to SEI-healing processes; (4) Probe the feasibility and mechanisms of healing reactions using these gases. This effort will contribute new knowledge of how gas molecules decompose in far-from-equilibrium reactions at the surface of a Li electrode, and how this reactivity can be exploited to develop optimized interphases for improved efficiency and cycle life.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将产生基本知识,并确定设计原理,以开发基于锂金属的改进的电池阳极。该知识对于实现可充电高能密度锂电池的可充电至关重要,用于电动汽车的运输和紧凑的重新存储重新产生的电力。这项工作将促进对这种活性材料如何形成有益的,电离的电导性材料膜的理解,这些薄膜有可能提高稳定性,循环效率和寿命。这项工作中开发的见解可用于设计新的制造程序和改进稳定度较高的锂阳极的界面,这目前是该技术的关键问题。这项工作可能会导致更轻,更持久,更紧凑的运输电池,从而支持改善国家能源可持续性,减少空气污染以及采用更广泛的电动汽车采用的潜在途径。教育和外展计划将利用并增加马萨诸塞州理工学院的现有计划,以使K-12学生受益,并提高与剑桥和大波士顿地区内与储能,电池和电化学有关的公共扫盲。该项目特别需要开发新的教育材料和教学模块,以支持公立学校科学教师教学能量转换和存储概念,以及与MIT Edgerton中心和MIT博物馆合作在MIT校园举办的研讨会。 PI还计划在夏季研究中包括大波士顿社区大学的学生。可充电Li Electrode是最有前途的“超越锂离子”高级电池化学的重要组成部分。但是,LI电极目前尚未以可接受的库仑效率,安全性或寿命循环。该项目研究了氧化物和氟化物气体如何与LI金属相互作用,并赋予有利于形成人造固体电解质相(SEI)的化学,形态和电化学特性。这项研究包括对LI反应的系统研究,该反应在LI表面产生离子化合物的气体,从而可以独立调整和研究形成的无机界面。通过探索预计将产生一系列独特的无机层组成的三种气体,这项工作将有助于对SEI化学,结构和电子特性如何控制性能的新基本了解,并确定可以推动未来添加剂开发和优化的优化的无机层化学。构成研究计划的主要任务是:(1)确定使用X射线光电子光谱,傅立叶转换基础光谱,电子显微镜和热/微结构建模的新鲜LI在气体环境中形成的膜的化学和结构特性; (2)执行循环测量并量化库仑效率,循环寿命和短路时间的关键电化学指标; (3)测量反应气体的物理和电化学特性,包括反应动力学,传输参数和电池环境内的电化学活性,这与SEI-HEAL过程有关; (4)使用这些气体探测愈合反应的可行性和机制。 This effort will contribute new knowledge of how gas molecules decompose in far-from-equilibrium reactions at the surface of a Li electrode, and how this reactivity can be exploited to develop optimized interphases for improved efficiency and cycle life.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The intrinsic behavior of lithium fluoride in solid electrolyte interphases on lithium
Reactivity and Evolution of Ionic Phases in the Lithium Solid-Electrolyte Interphase
  • DOI:
    10.1021/acsenergylett.1c00117
  • 发表时间:
    2021-02-10
  • 期刊:
  • 影响因子:
    22
  • 作者:
    Guo, Rui;Wang, Dongniu;Gallant, Betar M.
  • 通讯作者:
    Gallant, Betar M.
Can an Inorganic Coating Serve as Stable SEI for Aqueous Superconcentrated Electrolytes?
  • DOI:
    10.1021/acsenergylett.1c01097
  • 发表时间:
    2021-06-28
  • 期刊:
  • 影响因子:
    22
  • 作者:
    Droguet, Lea;Hobold, Gustavo M.;Grimaud, Alexis
  • 通讯作者:
    Grimaud, Alexis
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Betar Gallant其他文献

Betar Gallant的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Betar Gallant', 18)}}的其他基金

I-Corps: Hybrid solid-liquid cathode to boost lithium primary battery energy
I-Corps:混合固液阴极可提高锂原电池能量
  • 批准号:
    2332387
  • 财政年份:
    2023
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Standard Grant
CAREER: Elucidation and Development of Electrolyte and Interface Mechanisms Governing Calcium Redox in Nonaqueous Environments
职业:阐明和开发非水环境中控制钙氧化还原的电解质和界面机制
  • 批准号:
    2045868
  • 财政年份:
    2021
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于局部化学序调控的面心立方多主元合金微结构设计与强韧化研究
  • 批准号:
    52301135
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
纸基纤维网络的梯度孔结构设计及其强韧自愈机制和电化学动力学研究
  • 批准号:
    22378249
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
应用于复杂温场下的稀土硫酸盐类光学晶体的化学创制
  • 批准号:
    22375211
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
基于多组分化学构建二级结构可调控的磺酰脒类聚多肽用于智能纳米药物设计
  • 批准号:
    22375027
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
富锂层状材料Li-Ni-Fe-Mn-O有序畴结构设计和电化学特性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Chemical and structural design for high power energy storage materials
高功率储能材料的化学与结构设计
  • 批准号:
    DE240100032
  • 财政年份:
    2024
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Discovery Early Career Researcher Award
Mechanistic dissection of allosteric modulation and nonproteolytic chaperone activity of human insulin-degrading enzyme
人胰岛素降解酶变构调节和非蛋白水解伴侣活性的机制剖析
  • 批准号:
    10667987
  • 财政年份:
    2023
  • 资助金额:
    $ 33.02万
  • 项目类别:
Computer-aided design and development of isoform selective inhibitors of Casein Kinase 1
酪蛋白激酶 1 异构体选择性抑制剂的计算机辅助设计和开发
  • 批准号:
    10629703
  • 财政年份:
    2023
  • 资助金额:
    $ 33.02万
  • 项目类别:
Dynamics of HDV RNA Synthesis
HDV RNA 合成动力学
  • 批准号:
    10646632
  • 财政年份:
    2023
  • 资助金额:
    $ 33.02万
  • 项目类别:
Emerging mechanisms of viral gene regulation from battles between host and SARS-CoV-2
宿主与 SARS-CoV-2 之间的战斗中病毒基因调控的新机制
  • 批准号:
    10725416
  • 财政年份:
    2023
  • 资助金额:
    $ 33.02万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了