Chemical and structural design of inorganic-organic layers for stabilized Li anodes
稳定锂阳极无机-有机层的化学和结构设计
基本信息
- 批准号:1804247
- 负责人:
- 金额:$ 33.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will generate fundamental knowledge and identify design principles for developing improved battery anodes based on lithium metal. This knowledge is critical for enabling rechargeable high energy density lithium electrode batteries for electric vehicle-based transportation and for compact storage of renewably generated electricity. This work will advance understanding of how this active material forms beneficial, ionically-conductive material films that have the potential to impart improved stability, cycling efficiency and lifetime. The insights developed in this work can be used to design new fabrication procedures and improved interfaces for lithium anodes with higher degrees of stability, which is currently a key issue with this technology. This work could lead to lighter, longer-lasting and more compact transportation batteries, which supports improved national energy sustainability, reduced air pollution, and a potential path to more widespread electric vehicle adoption. The educational and outreach plans will leverage and add to existing programs at the Massachusetts Institute of Technology to benefit K-12 students and improve public literacy related to energy storage, batteries and electrochemistry within the Cambridge and Greater Boston areas. This project specifically entails development of new educational materials and teaching modules to support public school science teachers in teaching energy conversion and storage concepts, and workshops to be hosted on MIT campus in collaboration with the MIT Edgerton Center and MIT Museum. The PI also plans inclusion of Greater Boston community college students in summer research.The rechargeable Li electrode is an essential element of the most promising, "beyond Li-ion" advanced battery chemistries. However, Li electrodes do not currently cycle with acceptable Coulombic efficiency, safety, or lifetime. This project investigates how oxide and fluoride gases interact with Li metal, and impart chemical, morphological, and electrochemical properties favorable to formation of an artificial solid electrolyte interphase (SEI). This research includes systematic studies of Li reactions with gases that yield ionic compounds on the Li surface, allowing for independent tuning and study of the formed inorganic interface. By exploring three gases that are projected to yield a comprehensive set of distinct inorganic-layer compositions, this work will contribute new fundamental understanding of how the SEI chemical, structural and electronic properties govern performance, and identify optimized inorganic-layer chemistries that can drive future additive development and optimization. The major tasks that comprise the research plan are: (1) Determine the chemical and structural properties of films formed when fresh Li reacts in gas environments, using X-ray Photoelectron Spectroscopy, Fourier-Transform Infrared Spectroscopy, electron microscopy and thermal/microstructural modeling; (2) Perform cycling measurements and quantify key electrochemical metrics of Coulombic efficiency, cycle life, and short-circuit time; (3) Measure the physical and electrochemical properties of the reactant gas, including reaction kinetics, transport parameters, and electrochemical activity within battery environments, which are relevant to SEI-healing processes; (4) Probe the feasibility and mechanisms of healing reactions using these gases. This effort will contribute new knowledge of how gas molecules decompose in far-from-equilibrium reactions at the surface of a Li electrode, and how this reactivity can be exploited to develop optimized interphases for improved efficiency and cycle life.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将产生基础知识,并确定开发基于锂金属的改进电池阳极的设计原则。这一知识对于使可充电高能量密度锂电极电池能够用于基于电动车辆的运输和可再生发电的紧凑存储至关重要。这项工作将促进对这种活性材料如何形成有益的离子导电材料膜的理解,这些膜具有提高稳定性、循环效率和寿命的潜力。这项工作中开发的见解可用于设计新的制造程序和改进具有更高稳定性的锂阳极的界面,这是目前这项技术的关键问题。这项工作可能会导致更轻,更持久,更紧凑的运输电池,这有助于提高国家能源可持续性,减少空气污染,并为更广泛的电动汽车采用提供潜在途径。教育和推广计划将利用并增加马萨诸塞州理工学院的现有项目,以使K-12学生受益,并提高剑桥和大波士顿地区与储能,电池和电化学相关的公众素养。该项目特别需要开发新的教育材料和教学模块,以支持公立学校科学教师教授能源转换和存储概念,并与麻省理工学院埃杰顿中心和麻省理工学院博物馆合作在麻省理工学院校园举办研讨会。PI还计划将大波士顿社区大学的学生纳入夏季研究。可充电锂电极是最有前途的“超越锂离子”先进电池化学的基本元素。然而,Li电极目前不能以可接受的库仑效率、安全性或寿命循环。本项目研究氧化物和氟化物气体如何与锂金属相互作用,并赋予有利于形成人工固体电解质界面(SEI)的化学,形态和电化学特性。这项研究包括锂与气体反应的系统研究,这些气体在锂表面产生离子化合物,允许对形成的无机界面进行独立调整和研究。通过探索预计将产生一套全面的不同无机层成分的三种气体,这项工作将有助于对SEI化学,结构和电子特性如何控制性能的新的基本理解,并确定优化的无机层化学,以推动未来的添加剂开发和优化。研究计划的主要任务是:(1)利用X射线光电子能谱、傅里叶变换红外光谱、电子显微镜和热/微观结构模型确定新鲜Li在气体环境中反应时形成的膜的化学和结构性质;(2)进行循环测量并量化库仑效率、循环寿命和短路时间的关键电化学指标;(3)测量反应气体的物理和电化学性质,包括与SEI修复过程相关的反应动力学、传输参数和电池环境中的电化学活性;(4)探索使用这些气体进行修复反应的可行性和机制。这项工作将有助于了解气体分子如何在锂电极表面远离平衡的反应中分解,以及如何利用这种反应性来开发优化的界面,以提高效率和循环寿命。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The intrinsic behavior of lithium fluoride in solid electrolyte interphases on lithium
- DOI:10.1073/pnas.1911017116
- 发表时间:2020-01-07
- 期刊:
- 影响因子:11.1
- 作者:He, Mingfu;Guo, Rui;Gallant, Betar M.
- 通讯作者:Gallant, Betar M.
Reactivity and Evolution of Ionic Phases in the Lithium Solid-Electrolyte Interphase
- DOI:10.1021/acsenergylett.1c00117
- 发表时间:2021-02-10
- 期刊:
- 影响因子:22
- 作者:Guo, Rui;Wang, Dongniu;Gallant, Betar M.
- 通讯作者:Gallant, Betar M.
Can an Inorganic Coating Serve as Stable SEI for Aqueous Superconcentrated Electrolytes?
- DOI:10.1021/acsenergylett.1c01097
- 发表时间:2021-06-28
- 期刊:
- 影响因子:22
- 作者:Droguet, Lea;Hobold, Gustavo M.;Grimaud, Alexis
- 通讯作者:Grimaud, Alexis
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Betar Gallant其他文献
Betar Gallant的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Betar Gallant', 18)}}的其他基金
I-Corps: Hybrid solid-liquid cathode to boost lithium primary battery energy
I-Corps:混合固液阴极可提高锂原电池能量
- 批准号:
2332387 - 财政年份:2023
- 资助金额:
$ 33.02万 - 项目类别:
Standard Grant
CAREER: Elucidation and Development of Electrolyte and Interface Mechanisms Governing Calcium Redox in Nonaqueous Environments
职业:阐明和开发非水环境中控制钙氧化还原的电解质和界面机制
- 批准号:
2045868 - 财政年份:2021
- 资助金额:
$ 33.02万 - 项目类别:
Continuing Grant
相似国自然基金
CuAgSe基热电材料的结构特性与构效关系研究
- 批准号:22375214
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
Understanding structural evolution of galaxies with machine learning
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
染色体结构维持蛋白1在端粒DNA双链断裂损伤修复中的作用及其机理
- 批准号:31801145
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
典型团簇结构模式随尺度变化的理论计算研究
- 批准号:21043001
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
气动/结构耦合动力学系统目标敏感性分析的快速准确计算方法及优化设计研究
- 批准号:10402036
- 批准年份:2004
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Chemical and structural design for high power energy storage materials
高功率储能材料的化学与结构设计
- 批准号:
DE240100032 - 财政年份:2024
- 资助金额:
$ 33.02万 - 项目类别:
Discovery Early Career Researcher Award
A Chemical Genetic Approach to Exploring Novel Therapeutic Space for Colorectal Cancer
探索结直肠癌新治疗空间的化学遗传学方法
- 批准号:
10908073 - 财政年份:2023
- 资助金额:
$ 33.02万 - 项目类别:
Brain-penetrant chemical disaggregators of tau fibrils as therapeutics for Alzheimer's Disease
tau 原纤维的脑渗透化学分解剂作为阿尔茨海默氏病的治疗方法
- 批准号:
10384228 - 财政年份:2022
- 资助金额:
$ 33.02万 - 项目类别:
Discovery of Cell-based Chemical Probes Targeting Aberrant Angiogenesis in the Eye
发现针对眼部异常血管生成的基于细胞的化学探针
- 批准号:
10453044 - 财政年份:2022
- 资助金额:
$ 33.02万 - 项目类别:
Structural studies and development of chemical probes for PINK1, a mitochondrial ubiquitin kinase implicated in Parkinson's disease
PINK1(一种与帕金森病有关的线粒体泛素激酶)的结构研究和化学探针的开发
- 批准号:
469317 - 财政年份:2022
- 资助金额:
$ 33.02万 - 项目类别:
Operating Grants
Developing botanical-derived chemical tools for controlling mosquito vectors
开发植物源化学工具来控制蚊媒
- 批准号:
10596724 - 财政年份:2022
- 资助金额:
$ 33.02万 - 项目类别:
Discovery of Cell-based Chemical Probes Targeting Aberrant Angiogenesis in the Eye
发现针对眼部异常血管生成的基于细胞的化学探针
- 批准号:
10610440 - 财政年份:2022
- 资助金额:
$ 33.02万 - 项目类别:
Stereoisomeric chemical probes for targeting undruggable oncoproteins
用于靶向不可成药癌蛋白的立体异构化学探针
- 批准号:
10676197 - 财政年份:2021
- 资助金额:
$ 33.02万 - 项目类别:
A Chemical Genetic Approach to Exploring Novel Therapeutic Space for Colorectal Cancer
探索结直肠癌新治疗空间的化学遗传学方法
- 批准号:
10359839 - 财政年份:2021
- 资助金额:
$ 33.02万 - 项目类别:
Enabling the Accelerated Discovery of Novel Chemical Probes by Integration of Crystallographic, Computational, and Synthetic Chemistry Approaches
通过整合晶体学、计算和合成化学方法,加速发现新型化学探针
- 批准号:
10398798 - 财政年份:2021
- 资助金额:
$ 33.02万 - 项目类别:














{{item.name}}会员




