Singularity Formation in Geometric Flows

几何流中奇点的形成

基本信息

  • 批准号:
    1806190
  • 负责人:
  • 金额:
    $ 21.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

This project is concerned with questions in differential geometry, which is the study of higher-dimensional shapes and their curvature. These objects play a central role in general relativity where gravitation is reflected by the curvature of space-time. Geometric objects can often be improved if we evolve them by a differential equation, so that the curvature dissipates in a way analogous to heat dissipation. However, one important difference is that, while heat dissipation is a linear phenomenon, all the geometrically interesting equations are nonlinear. This project is aimed at understanding these nonlinear phenomena. Of particular interest is the process of singularity formation: That is to say, what happens when a surface is about to break apart and the curvature becomes very large? Understanding these questions is an important problem within mathematics. In addition, discrete versions of these equations are used in engineering and computer science.The most important example of a geometric evolution equation is Hamilton's Ricci flow, which is a key tool in Perelman's proof of the Poincare and Geometrization conjectures, as well as in the proof of the Sphere Theorem. Another important example is the mean curvature flow for surfaces in Euclidean space. One of the main concept is that of an ancient solutions. Ancient solutions are solutions which can be extended infinitely far backward in time. They often arise as models for a solution to a geometric flow right before a singularity forms. As such, they play an important role in understanding singularity formation. One of the goals here is to classify all ancient solutions in low dimensions, subject to a noncollapsing assumption. This is analogous to the problem of classifying entire solutions to elliptic equations. The PI is also planning to study singularity formation in higher dimensions, under suitable curvature restrictions. In another direction, the PI is interested in studying problems related to minimal surfaces and free boundary value problems, as well as applications of partial differential equations to general relativity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目关注的是微分几何中的问题,这是高维形状及其曲率的研究。这些物体在广义相对论中扮演着核心角色,在广义相对论中,引力被时空的曲率所反映。如果我们通过微分方程来演化几何对象,那么它们通常可以得到改进,因此曲率以类似于散热的方式消散。然而,一个重要的区别是,虽然热耗散是线性现象,但所有几何上有趣的方程都是非线性的。本项目旨在了解这些非线性现象。特别令人感兴趣的是奇点形成的过程:也就是说,当一个曲面即将分裂而曲率变得非常大时会发生什么?理解这些问题是数学中的一个重要问题。几何演化方程最重要的例子是汉密尔顿的里奇流(Ricci flow),它是佩雷尔曼证明庞加莱方程和几何化方程的关键工具,也是证明球面定理的关键工具。另一个重要的例子是欧氏空间中曲面的平均曲率流。其中一个主要的概念是古解,古解是可以在时间上无限向后延伸的解,它们经常作为奇点形成之前的几何流的解的模型出现。因此,它们在理解奇点的形成过程中扮演着重要的角色,这里的目标之一是在不坍缩的假设下,对所有低维的古代解进行分类。这类似于对椭圆方程的整体解进行分类的问题。PI还计划在适当的曲率限制下研究更高维的奇异性形成。在另一个方向上,PI对研究与极小曲面和自由边值问题有关的问题感兴趣,该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值进行评估来支持和更广泛的影响审查标准。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unique Asymptotics of Compact Ancient Solutions to Three‐Dimensional Ricci Flow
  • DOI:
    10.1002/cpa.21955
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Angenent;S. Brendle;P. Daskalopoulos;N. Šešum
  • 通讯作者:
    S. Angenent;S. Brendle;P. Daskalopoulos;N. Šešum
Ancient solutions to the Ricci flow in dimension $3$
  • DOI:
    10.4310/acta.2020.v225.n1.a1
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    S. Brendle
  • 通讯作者:
    S. Brendle
Uniqueness of compact ancient solutions to three-dimensional Ricci flow
  • DOI:
    10.1007/s00222-021-01054-0
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    S. Brendle;P. Daskalopoulos;N. Šešum
  • 通讯作者:
    S. Brendle;P. Daskalopoulos;N. Šešum
Sobolev Inequalities in Manifolds with Nonnegative Curvature
The isoperimetric inequality for a minimal submanifold in Euclidean space
  • DOI:
    10.1090/jams/969
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Brendle
  • 通讯作者:
    S. Brendle
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Simon Brendle其他文献

On a Problem of Optimal Stochastic Control with Incomplete Information
The Isoperimetric Inequality
等周不等式
Area Bounds for Minimal Surfaces that Pass Through a Prescribed Point in a Ball
  • DOI:
    10.1007/s00039-017-0399-6
  • 发表时间:
    2017-02-25
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Simon Brendle;Pei-Ken Hung
  • 通讯作者:
    Pei-Ken Hung
Uniqueness of gradient Ricci solitons
  • DOI:
    10.4310/mrl.2011.v18.n3.a13
  • 发表时间:
    2010-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Simon Brendle
  • 通讯作者:
    Simon Brendle
Alexandrov immersed minimal tori in $S^3$
  • DOI:
    10.4310/mrl.2013.v20.n3.a4
  • 发表时间:
    2012-11
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Simon Brendle
  • 通讯作者:
    Simon Brendle

Simon Brendle的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Simon Brendle', 18)}}的其他基金

Geometric Flows, Geometric Inequalities, and Rigidity of Embeddings
几何流、几何不等式和嵌入刚性
  • 批准号:
    2103573
  • 财政年份:
    2021
  • 资助金额:
    $ 21.23万
  • 项目类别:
    Continuing Grant
Partial Differential Equations in Riemannian Geometry
黎曼几何中的偏微分方程
  • 批准号:
    1649174
  • 财政年份:
    2016
  • 资助金额:
    $ 21.23万
  • 项目类别:
    Continuing Grant
Partial Differential Equations in Riemannian Geometry
黎曼几何中的偏微分方程
  • 批准号:
    1505724
  • 财政年份:
    2015
  • 资助金额:
    $ 21.23万
  • 项目类别:
    Continuing Grant
PDE Problems in Geometry
几何中的偏微分方程问题
  • 批准号:
    1201924
  • 财政年份:
    2012
  • 资助金额:
    $ 21.23万
  • 项目类别:
    Continuing Grant
Parabolic flows in geometry
几何中的抛物线流
  • 批准号:
    0905628
  • 财政年份:
    2009
  • 资助金额:
    $ 21.23万
  • 项目类别:
    Continuing Grant
Parabolic problems in conformal geometry
共形几何中的抛物线问题
  • 批准号:
    0605223
  • 财政年份:
    2006
  • 资助金额:
    $ 21.23万
  • 项目类别:
    Standard Grant
Nonlinear partial differential equations arising in differential geometry
微分几何中出现的非线性偏微分方程
  • 批准号:
    0245208
  • 财政年份:
    2003
  • 资助金额:
    $ 21.23万
  • 项目类别:
    Standard Grant

相似国自然基金

The formation and evolution of planetary systems in dense star clusters
  • 批准号:
    11043007
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Geometric and numerical studies of the behavior and pattern formation of powders and charged particles under periodic external forces
粉末和带电粒子在周期性外力作用下的行为和图案形成的几何和数值研究
  • 批准号:
    23K03260
  • 财政年份:
    2023
  • 资助金额:
    $ 21.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Regularity of minimizers and pattern formation in geometric minimization problems
几何最小化问题中最小化器的正则性和模式形成
  • 批准号:
    RGPIN-2018-06295
  • 财政年份:
    2022
  • 资助金额:
    $ 21.23万
  • 项目类别:
    Discovery Grants Program - Individual
Singularity formation in general relativity, and geometric inverse problems.
广义相对论中奇点的形成和几何逆问题。
  • 批准号:
    RGPIN-2020-05108
  • 财政年份:
    2022
  • 资助金额:
    $ 21.23万
  • 项目类别:
    Discovery Grants Program - Individual
Regularity of minimizers and pattern formation in geometric minimization problems
几何最小化问题中最小化器的正则性和模式形成
  • 批准号:
    RGPIN-2018-06295
  • 财政年份:
    2021
  • 资助金额:
    $ 21.23万
  • 项目类别:
    Discovery Grants Program - Individual
Singularity formation in general relativity, and geometric inverse problems.
广义相对论中奇点的形成和几何逆问题。
  • 批准号:
    RGPIN-2020-05108
  • 财政年份:
    2021
  • 资助金额:
    $ 21.23万
  • 项目类别:
    Discovery Grants Program - Individual
Regularity of minimizers and pattern formation in geometric minimization problems
几何最小化问题中最小化器的正则性和模式形成
  • 批准号:
    RGPIN-2018-06295
  • 财政年份:
    2020
  • 资助金额:
    $ 21.23万
  • 项目类别:
    Discovery Grants Program - Individual
Singularity formation in general relativity, and geometric inverse problems.
广义相对论中奇点的形成和几何逆问题。
  • 批准号:
    RGPIN-2020-05108
  • 财政年份:
    2020
  • 资助金额:
    $ 21.23万
  • 项目类别:
    Discovery Grants Program - Individual
Regularity of minimizers and pattern formation in geometric minimization problems
几何最小化问题中最小化器的正则性和模式形成
  • 批准号:
    RGPIN-2018-06295
  • 财政年份:
    2019
  • 资助金额:
    $ 21.23万
  • 项目类别:
    Discovery Grants Program - Individual
Exceptional geometric structures required for string theory and M-theory: moduli spaces and formation of singularities
弦理论和 M 理论所需的特殊几何结构:模空间和奇点的形成
  • 批准号:
    RGPIN-2014-05050
  • 财政年份:
    2018
  • 资助金额:
    $ 21.23万
  • 项目类别:
    Discovery Grants Program - Individual
Regularity of minimizers and pattern formation in geometric minimization problems
几何最小化问题中最小化器的正则性和模式形成
  • 批准号:
    RGPIN-2018-06295
  • 财政年份:
    2018
  • 资助金额:
    $ 21.23万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了