PDE Problems in Geometry
几何中的偏微分方程问题
基本信息
- 批准号:1201924
- 负责人:
- 金额:$ 20.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research is concerned with problems in the field of geometric flows, in particular the Ricci flow and the mean curvature flow. Specifically, we plan to study the evolution of symplectomorphisms under the mean curvature flow. In particular, we want to find condition that guarantee that the mean curvature flow evolves a given symplectomorphism to a biholomorphic isometry. The PI also plans to study self-similar solutions to the Ricci flow. The PI has recently obtained a uniqueness result for the Bryant soliton under a noncollapsing assumption. It seems interesting to try to construct self-similar solutions which are collapsed, but not rotationally symmetric. Finally, the PI plans to study the gap between the first and second eigenvalue of a Schroedinger operator, building on recent work of Andrews and Clutterbuck.The main goal of this project is to approach problems in differential geometry using tools from analysis, especially partial differential equations. This approach has been successful in the past, and has led to the solution of several major open in the problems in the field, including Min-Oo's Conjecture, the Compactness Conjecture for the Yamabe problem, and the Differentiable Sphere Theorem. The Lagrangian mean curvature flow offers potential applications to mathematical physics, due to its connection with the Strominger-Yau-Zaslow conjecture.
建议的研究涉及几何流领域中的问题,特别是Ricci流和平均曲率流。具体地说,我们计划研究辛同构在平均曲率流下的演化。特别地,我们想要找到保证平均曲率流将给定的辛同构演化为双全纯等距的条件。PI还计划研究Ricci流的自相似解。PI最近在非折叠假设下得到了布莱恩特孤子的唯一性结果。试图构造折叠的、但不是旋转对称的自相似解似乎很有趣。最后,PI计划在Andrews和Clutterak最近工作的基础上研究薛定谔算子的第一和第二本征值之间的差距。这个项目的主要目标是使用分析中的工具来解决微分几何问题,特别是偏微分方程。这种方法在过去取得了成功,并导致了该领域中几个主要公开问题的解决,包括Min-Oo猜想、Yamabe问题的紧性猜想和可微球定理。由于拉格朗日平均曲率流与Strominger-Yau-Zaslow猜想的联系,它在数学物理中具有潜在的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simon Brendle其他文献
On a Problem of Optimal Stochastic Control with Incomplete Information
- DOI:
10.1007/s00245-008-9036-y - 发表时间:
2008-01-24 - 期刊:
- 影响因子:1.700
- 作者:
Simon Brendle - 通讯作者:
Simon Brendle
Area Bounds for Minimal Surfaces that Pass Through a Prescribed Point in a Ball
- DOI:
10.1007/s00039-017-0399-6 - 发表时间:
2017-02-25 - 期刊:
- 影响因子:2.500
- 作者:
Simon Brendle;Pei-Ken Hung - 通讯作者:
Pei-Ken Hung
Uniqueness of gradient Ricci solitons
- DOI:
10.4310/mrl.2011.v18.n3.a13 - 发表时间:
2010-10 - 期刊:
- 影响因子:0
- 作者:
Simon Brendle - 通讯作者:
Simon Brendle
Alexandrov immersed minimal tori in $S^3$
- DOI:
10.4310/mrl.2013.v20.n3.a4 - 发表时间:
2012-11 - 期刊:
- 影响因子:1
- 作者:
Simon Brendle - 通讯作者:
Simon Brendle
Simon Brendle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Simon Brendle', 18)}}的其他基金
Geometric Flows, Geometric Inequalities, and Rigidity of Embeddings
几何流、几何不等式和嵌入刚性
- 批准号:
2103573 - 财政年份:2021
- 资助金额:
$ 20.79万 - 项目类别:
Continuing Grant
Singularity Formation in Geometric Flows
几何流中奇点的形成
- 批准号:
1806190 - 财政年份:2018
- 资助金额:
$ 20.79万 - 项目类别:
Continuing Grant
Partial Differential Equations in Riemannian Geometry
黎曼几何中的偏微分方程
- 批准号:
1649174 - 财政年份:2016
- 资助金额:
$ 20.79万 - 项目类别:
Continuing Grant
Partial Differential Equations in Riemannian Geometry
黎曼几何中的偏微分方程
- 批准号:
1505724 - 财政年份:2015
- 资助金额:
$ 20.79万 - 项目类别:
Continuing Grant
Parabolic problems in conformal geometry
共形几何中的抛物线问题
- 批准号:
0605223 - 财政年份:2006
- 资助金额:
$ 20.79万 - 项目类别:
Standard Grant
Nonlinear partial differential equations arising in differential geometry
微分几何中出现的非线性偏微分方程
- 批准号:
0245208 - 财政年份:2003
- 资助金额:
$ 20.79万 - 项目类别:
Standard Grant
相似海外基金
Problems in the Geometry of Numbers and Diophantine Analysis
数几何问题和丢番图分析
- 批准号:
2327098 - 财政年份:2023
- 资助金额:
$ 20.79万 - 项目类别:
Standard Grant
Problems in Combinatorial Geometry and Ramsey Theory
组合几何和拉姆齐理论中的问题
- 批准号:
2246847 - 财政年份:2023
- 资助金额:
$ 20.79万 - 项目类别:
Standard Grant
Problems in geometry, topology, and group theory
几何、拓扑和群论问题
- 批准号:
2305286 - 财政年份:2023
- 资助金额:
$ 20.79万 - 项目类别:
Continuing Grant
Problems Arising in Combinatorial Algebraic Geometry
组合代数几何中出现的问题
- 批准号:
573649-2022 - 财政年份:2022
- 资助金额:
$ 20.79万 - 项目类别:
University Undergraduate Student Research Awards
On Problems in and Connections between Analysis, Geometry and Combinatorics
论分析、几何和组合学中的问题和联系
- 批准号:
2154232 - 财政年份:2022
- 资助金额:
$ 20.79万 - 项目类别:
Standard Grant
Birational Geometry: Invariants, Reconstruction, and Deformation Problems
双有理几何:不变量、重构和变形问题
- 批准号:
2201195 - 财政年份:2022
- 资助金额:
$ 20.79万 - 项目类别:
Standard Grant
AF:Medium:RUI:Algorithmic Problems in Kinematic Distance Geometry
AF:Medium:RUI:运动距离几何中的算法问题
- 批准号:
2212309 - 财政年份:2022
- 资助金额:
$ 20.79万 - 项目类别:
Continuing Grant
Problems in Randomized Algorithms, Random Graphs, and Computational Geometry
随机算法、随机图和计算几何中的问题
- 批准号:
RGPIN-2019-04269 - 财政年份:2022
- 资助金额:
$ 20.79万 - 项目类别:
Discovery Grants Program - Individual
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
- 批准号:
RGPIN-2016-06660 - 财政年份:2022
- 资助金额:
$ 20.79万 - 项目类别:
Discovery Grants Program - Individual
Extremal problems in geometry
几何中的极值问题
- 批准号:
RGPIN-2022-03649 - 财政年份:2022
- 资助金额:
$ 20.79万 - 项目类别:
Discovery Grants Program - Individual