Geometric Flows, Geometric Inequalities, and Rigidity of Embeddings
几何流、几何不等式和嵌入刚性
基本信息
- 批准号:2103573
- 负责人:
- 金额:$ 22.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is focused on questions in differential geometry. The aim of differential geometry is to study higher-dimensional shapes and their curvature. In particular, these concepts provide a mathematical framework for general relativity. Geometric flows are a key tool in differential geometry. The idea here is to take a geometric object and evolve it by a differential equation in order to smooth it out. These differential equations share common features with heat diffusion. However, the differential equations that arise in geometry tend to be nonlinear, which presents challenges in their analysis. A main focus is to understand the behavior of these equations when the solution becomes singular, that is, when the curvature becomes very large. An important problem is to classify the singularity models; these are the limiting shapes that occur at a singularity. Another major goal in geometry is to understand geometric inequalities. A basic example is the isoperimetric inequality (which states that balls have smallest surface area among all shapes that enclose a given amount of volume), but many other types of inequalities are of importance in differential geometry. The project also includes training of PhD students and mentoring of post-doctoral researchers.The primary examples of geometric flows are the Ricci flow and the mean curvature flow. The mean curvature flow is the most natural evolution equation for a surface embedded in Euclidean space, while the Ricci flow is the most natural evolution equation for a Riemannian metric. The Ricci flow has become an indispensable tool in differential geometry. Among other things, the Ricci flow lies at the heart of Perelman's proof of the Poincare conjecture. The PI will study what types of singularities can form under these evolution equations. For example, it would be very interesting to understand whether a plane of multiplicity 2 can arise as a singularity model under the mean curvature flow. In another direction, the PI will study problems related to geometric inequalities. In particular, it would be very interesting to understand isoperimetric inequalities in negatively curved manifolds. Moreover, many geometric inequalities come with an associated rigidity statement which characterizes the case of equality. The PI will study the near-equality case in such inequalities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的重点是微分几何问题。 微分几何的目的是研究高维形状及其曲率。特别是,这些概念为广义相对论提供了数学框架。 几何流是微分几何中的关键工具。 这里的想法是采用一个几何对象并通过微分方程对其进行演化以使其平滑。这些微分方程与热扩散有共同的特征。然而,几何中出现的微分方程往往是非线性的,这给分析带来了挑战。 主要焦点是理解当解变得奇异时(即曲率变得非常大时)这些方程的行为。 一个重要的问题是对奇点模型进行分类;这些是奇点处出现的极限形状。几何的另一个主要目标是理解几何不等式。 一个基本的例子是等周不等式(它指出球在包围给定体积的所有形状中具有最小的表面积),但许多其他类型的不等式在微分几何中也很重要。 该项目还包括培养博士生和指导博士后研究人员。几何流的主要例子是里奇流和平均曲率流。平均曲率流是嵌入欧几里得空间中的表面最自然的演化方程,而里奇流是黎曼度量最自然的演化方程。 里奇流已成为微分几何中不可或缺的工具。除其他外,里奇流是佩雷尔曼证明庞加莱猜想的核心。 PI 将研究在这些演化方程下可以形成什么类型的奇点。 例如,了解重数为 2 的平面是否可以作为平均曲率流下的奇点模型出现将是非常有趣的。 另一方面,PI将研究与几何不等式相关的问题。 特别是,了解负曲流形中的等周不等式将非常有趣。 此外,许多几何不等式都带有相关的刚性陈述,它表征了等式的情况。 PI 将研究此类不平等中近乎平等的案例。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Singularity models in the three-dimensional Ricci flow
- DOI:
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:S. Brendle
- 通讯作者:S. Brendle
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simon Brendle其他文献
On a Problem of Optimal Stochastic Control with Incomplete Information
- DOI:
10.1007/s00245-008-9036-y - 发表时间:
2008-01-24 - 期刊:
- 影响因子:1.700
- 作者:
Simon Brendle - 通讯作者:
Simon Brendle
Area Bounds for Minimal Surfaces that Pass Through a Prescribed Point in a Ball
- DOI:
10.1007/s00039-017-0399-6 - 发表时间:
2017-02-25 - 期刊:
- 影响因子:2.500
- 作者:
Simon Brendle;Pei-Ken Hung - 通讯作者:
Pei-Ken Hung
Uniqueness of gradient Ricci solitons
- DOI:
10.4310/mrl.2011.v18.n3.a13 - 发表时间:
2010-10 - 期刊:
- 影响因子:0
- 作者:
Simon Brendle - 通讯作者:
Simon Brendle
Alexandrov immersed minimal tori in $S^3$
- DOI:
10.4310/mrl.2013.v20.n3.a4 - 发表时间:
2012-11 - 期刊:
- 影响因子:1
- 作者:
Simon Brendle - 通讯作者:
Simon Brendle
Simon Brendle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Simon Brendle', 18)}}的其他基金
Singularity Formation in Geometric Flows
几何流中奇点的形成
- 批准号:
1806190 - 财政年份:2018
- 资助金额:
$ 22.16万 - 项目类别:
Continuing Grant
Partial Differential Equations in Riemannian Geometry
黎曼几何中的偏微分方程
- 批准号:
1649174 - 财政年份:2016
- 资助金额:
$ 22.16万 - 项目类别:
Continuing Grant
Partial Differential Equations in Riemannian Geometry
黎曼几何中的偏微分方程
- 批准号:
1505724 - 财政年份:2015
- 资助金额:
$ 22.16万 - 项目类别:
Continuing Grant
Parabolic problems in conformal geometry
共形几何中的抛物线问题
- 批准号:
0605223 - 财政年份:2006
- 资助金额:
$ 22.16万 - 项目类别:
Standard Grant
Nonlinear partial differential equations arising in differential geometry
微分几何中出现的非线性偏微分方程
- 批准号:
0245208 - 财政年份:2003
- 资助金额:
$ 22.16万 - 项目类别:
Standard Grant
相似海外基金
Computing Lagrangian means in multi-timescale fluid flows
计算多时间尺度流体流动中的拉格朗日均值
- 批准号:
EP/Y021479/1 - 财政年份:2024
- 资助金额:
$ 22.16万 - 项目类别:
Research Grant
MHDSSP: Self-sustaining processes and edge states in magnetohydrodynamic flows subject to rotation and shear
MHDSSP:受到旋转和剪切作用的磁流体动力流中的自持过程和边缘状态
- 批准号:
EP/Y029194/1 - 财政年份:2024
- 资助金额:
$ 22.16万 - 项目类别:
Fellowship
Collaborative Research: GEM--Multi-scale Magnetosphere-Ionosphere-Thermosphere Coupling Dynamics Driven by Bursty Bulk Flows
合作研究:GEM——突发体流驱动的多尺度磁层-电离层-热层耦合动力学
- 批准号:
2349872 - 财政年份:2024
- 资助金额:
$ 22.16万 - 项目类别:
Standard Grant
Mesh-free methods for turbulent reacting flows: the next generation of DNS
用于湍流反应流的无网格方法:下一代 DNS
- 批准号:
EP/W005247/2 - 财政年份:2024
- 资助金额:
$ 22.16万 - 项目类别:
Research Grant
SUPERSLUG: Deconstructing sediment superslugs as a legacy of extreme flows
SUPERSLUG:解构沉积物超级段塞作为极端流动的遗产
- 批准号:
NE/Z00022X/1 - 财政年份:2024
- 资助金额:
$ 22.16万 - 项目类别:
Research Grant
Conference: Geometric Flows and Relativity
会议:几何流和相对论
- 批准号:
2348273 - 财政年份:2024
- 资助金额:
$ 22.16万 - 项目类别:
Standard Grant
Conference: St. Louis Topology Conference: Flows and Foliations in 3-Manifolds
会议:圣路易斯拓扑会议:3 流形中的流动和叶理
- 批准号:
2350309 - 财政年份:2024
- 资助金额:
$ 22.16万 - 项目类别:
Standard Grant
CAREER: Turbulence-Resolving Integral Simulations for Boundary Layer Flows
职业:边界层流的湍流求解积分模拟
- 批准号:
2340121 - 财政年份:2024
- 资助金额:
$ 22.16万 - 项目类别:
Continuing Grant
A reliable approach for the characterization of biologically-relevant cardiovascular flows
表征生物学相关心血管血流的可靠方法
- 批准号:
2908744 - 财政年份:2024
- 资助金额:
$ 22.16万 - 项目类别:
Studentship
ERI: Experimental Investigation of Compressibility Effects on Turbulent Kinetic Energy Production in Supersonic Flows
ERI:压缩性对超音速流中湍动能产生的影响的实验研究
- 批准号:
2347416 - 财政年份:2024
- 资助金额:
$ 22.16万 - 项目类别:
Standard Grant