Parabolic flows in geometry

几何中的抛物线流

基本信息

  • 批准号:
    0905628
  • 负责人:
  • 金额:
    $ 40.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

The PI proposes to study various problems in the field of geometric partial differential equations. For example, he would like to study the qualitative behavior of the Ricci flow on manifolds with positive isotropic curvature. In particular, the PI would like to analyze what kinds of singularities can occur along the flow. In another project, the PI intends to study the Yamabe problem on manifolds with boundary. The goal here is to construct conformal metrics that have constant scalar curvature in the interior and zero mean curvature along the boundary. The PI also intendsto study ancient solutions to the Yamabe flow on the n-dimensional sphere. This question is motivated by a classification result, due to Hamilton, Daskalopoulos, and Sesum, for ancient solutions to the Ricci flow on the two-sphere. This project is concerned with questions at the crossroads of analysis and differential geometry. The use of analytical techniques in geometry has been extremely successful in recent years. In particular, Hamilton's Ricci flow plays a key role in Perelman's solution of the Poincare conjecture, as well as in the proof of the Differentiable Sphere Theorem by Richard Schoen and myself. The goal of the project is to gain a better understanding of these geometric evolution equations, and their qualitative properties.
PI建议研究几何偏微分方程领域的各种问题。例如,他想研究的定性行为的里奇流流形与积极的各向同性曲率。特别地,PI想要分析什么样的奇点可以沿流沿着发生。在另一个项目中,PI打算研究具有边界的流形上的Yamabe问题。这里的目标是构造共形度量,具有恒定的标量曲率的内部和零平均曲率沿着边界。 PI还打算研究n维球体上Yamabe流的古代解。这个问题的动机是一个分类的结果,由于汉密尔顿,Daskalopoulos,和Sesum,古代解决方案的里奇流的两个领域。该项目关注分析和微分几何交叉点的问题。近年来,几何学中分析技巧的应用极为成功。特别是,汉密尔顿的里奇流起着关键作用,佩雷尔曼的解决方案的庞加莱猜想,以及在证明微分球定理的理查德舍恩和我自己。该项目的目标是更好地理解这些几何演化方程及其定性性质。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Simon Brendle其他文献

On a Problem of Optimal Stochastic Control with Incomplete Information
The Isoperimetric Inequality
等周不等式
Area Bounds for Minimal Surfaces that Pass Through a Prescribed Point in a Ball
  • DOI:
    10.1007/s00039-017-0399-6
  • 发表时间:
    2017-02-25
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Simon Brendle;Pei-Ken Hung
  • 通讯作者:
    Pei-Ken Hung
Uniqueness of gradient Ricci solitons
  • DOI:
    10.4310/mrl.2011.v18.n3.a13
  • 发表时间:
    2010-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Simon Brendle
  • 通讯作者:
    Simon Brendle
Alexandrov immersed minimal tori in $S^3$
  • DOI:
    10.4310/mrl.2013.v20.n3.a4
  • 发表时间:
    2012-11
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Simon Brendle
  • 通讯作者:
    Simon Brendle

Simon Brendle的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Simon Brendle', 18)}}的其他基金

Geometric Flows, Geometric Inequalities, and Rigidity of Embeddings
几何流、几何不等式和嵌入刚性
  • 批准号:
    2103573
  • 财政年份:
    2021
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Continuing Grant
Singularity Formation in Geometric Flows
几何流中奇点的形成
  • 批准号:
    1806190
  • 财政年份:
    2018
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Continuing Grant
Partial Differential Equations in Riemannian Geometry
黎曼几何中的偏微分方程
  • 批准号:
    1649174
  • 财政年份:
    2016
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Continuing Grant
Partial Differential Equations in Riemannian Geometry
黎曼几何中的偏微分方程
  • 批准号:
    1505724
  • 财政年份:
    2015
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Continuing Grant
PDE Problems in Geometry
几何中的偏微分方程问题
  • 批准号:
    1201924
  • 财政年份:
    2012
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Continuing Grant
Parabolic problems in conformal geometry
共形几何中的抛物线问题
  • 批准号:
    0605223
  • 财政年份:
    2006
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Standard Grant
Nonlinear partial differential equations arising in differential geometry
微分几何中出现的非线性偏微分方程
  • 批准号:
    0245208
  • 财政年份:
    2003
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Standard Grant

相似海外基金

Elastic turbulence in micro canopy flows, effects of rheology and geometry
微冠层流动中的弹性湍流、流变学和几何形状的影响
  • 批准号:
    23K19103
  • 财政年份:
    2023
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Workshop on Geometry and Analysis of Fluid Flows
流体流动几何与分析研讨会
  • 批准号:
    2230558
  • 财政年份:
    2022
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Standard Grant
Geometry and Asymptotics of Schubert Polynomials, Graph Colorings, and Flows on Graphs
舒伯特多项式的几何和渐近、图着色和图流
  • 批准号:
    2154019
  • 财政年份:
    2022
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Standard Grant
Computational Methods for Simulating Flows and Structures with Complex Dynamic Geometry
复杂动态几何结构的流动和结构仿真计算方法
  • 批准号:
    RGPIN-2021-02524
  • 财政年份:
    2022
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Discovery Grants Program - Individual
Controlling complex fluid displacement flows in confined geometry
控制受限几何形状中的复杂流体驱替流
  • 批准号:
    RGPIN-2015-04829
  • 财政年份:
    2021
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Discovery Grants Program - Individual
Mechanisms and developmental functions of cytoplasmic flows in early embryogenesis
早期胚胎发生中细胞质流动的机制和发育功能
  • 批准号:
    10297436
  • 财政年份:
    2021
  • 资助金额:
    $ 40.81万
  • 项目类别:
Computational Methods for Simulating Flows and Structures with Complex Dynamic Geometry
复杂动态几何结构的流动和结构仿真计算方法
  • 批准号:
    RGPIN-2021-02524
  • 财政年份:
    2021
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Discovery Grants Program - Individual
Mechanisms and developmental functions of cytoplasmic flows in early embryogenesis
早期胚胎发生中细胞质流动的机制和发育功能
  • 批准号:
    10796050
  • 财政年份:
    2021
  • 资助金额:
    $ 40.81万
  • 项目类别:
Mechanisms and developmental functions of cytoplasmic flows in early embryogenesis
早期胚胎发生中细胞质流动的机制和发育功能
  • 批准号:
    10491186
  • 财政年份:
    2021
  • 资助金额:
    $ 40.81万
  • 项目类别:
Controlling complex fluid displacement flows in confined geometry
控制受限几何形状中的复杂流体驱替流
  • 批准号:
    RGPIN-2015-04829
  • 财政年份:
    2020
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了