Dynamics and Symmetry in Quantum Gravity

量子引力的动力学和对称性

基本信息

  • 批准号:
    1806290
  • 负责人:
  • 金额:
    $ 18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-06-15 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

An important question facing fundamental physics is how the well-tested laws of Einstein's theory of gravity and quantum mechanics are consistent -- the question of quantum gravity. This question is central for understanding the very origin of our universe, the big bang. Remarkable progress in understanding the big bang has occurred through the use of loop quantum cosmology (LQC), a simplified version of loop quantum gravity (LQG) for modeling the universe as a whole. This award seeks to bridge the gap between LQC and full LQG. Such a bridge would allow future comparisons of LQC with data to tell us exact details about the fundamental laws of quantum gravity. Bridging this gap requires answering a number of interesting fundamental conceptual questions. A second part of this research aims to answer key questions regarding the Feynman sum-over-histories formulation of loop quantum gravity, in which space and time are treated in a more unified way, and to bring this formulation closer to completion. By enabling graduate students to participate in frontier physics, and to interact with other research groups, this award will have a broad and long-term impact on the development of future scientists. The results of the research will be disseminated to the scientific community through peer reviewed publication and scientific lectures, as well as to the general public through public lectures and other means.With this award, the observational, cosmological consequences of different proposals for dynamics in LQG will be studied. To accomplish this, the PI will first find an embedding of LQC states into diffeomorphism invariant LQG states that satisfy the diffeomorphism invariant, quantum criterion for homogeneity and isotropy recently established by the PI's group. This embedding, appropriately regularized, will enable different proposals for dynamics in LQG to be translated into LQC, and thereby to distinguish their observational consequences using established methods. The task of finding the corresponding LQC dynamics will be simplified by the fact that the resulting possibilities are severely restricted by diffeomorphism invariance, as proven recently by the PI's group. The PI also plans to further develop the sum over histories approach to LQG, known as spin-foams. In prior work of the PI, the prevailing EPRL model of spin-foams was modified to correct its semiclassical limit, yielding what is called the proper spin-foam model. Since then, other research groups have indicated how this modified model may solve a number of long-standing issues in spin-foams. These possibilities, as well as other issues in spin-foams, will be investigated with the present award.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
基础物理学面临的一个重要问题是,爱因斯坦的引力理论和量子力学的久经考验的定律是如何一致的——量子引力的问题。这个问题对于理解宇宙的起源——大爆炸至关重要。通过使用环量子宇宙学(LQC),在理解大爆炸方面取得了显著进展。环量子宇宙学是环量子引力(LQG)的简化版本,用于将宇宙作为一个整体进行建模。该奖项旨在弥合LQC和完全LQG之间的差距。这样的桥梁将允许未来LQC与数据的比较,从而告诉我们关于量子引力基本定律的确切细节。弥合这一差距需要回答一些有趣的基本概念问题。本研究的第二部分旨在回答关于环形量子引力的费曼历史和公式的关键问题,其中空间和时间以更统一的方式处理,并使该公式更接近完成。通过使研究生能够参与前沿物理学,并与其他研究小组互动,该奖项将对未来科学家的发展产生广泛而长期的影响。研究结果将通过同行评审出版物和科学讲座向科学界传播,并通过公开讲座和其他方式向公众传播。有了这个奖项,LQG动力学的不同建议的观测和宇宙学结果将被研究。为了实现这一目标,PI将首先找到LQC状态嵌入到微分同态不变的LQG状态中,这些状态满足PI团队最近建立的微分同态不变、均匀性和各向同性的量子准则。这种嵌入,适当地正则化,将使LQG中不同的动力学建议能够转化为LQC,从而使用既定的方法区分它们的观察结果。找到相应的LQC动力学的任务将被这样一个事实所简化,即结果的可能性受到微分同态不变性的严重限制,正如PI的小组最近所证明的那样。PI还计划进一步发展LQG的历史总和方法,即自旋泡沫。在PI先前的工作中,对流行的自旋泡沫的EPRL模型进行了修改,以纠正其半经典极限,从而得到了所谓的适当自旋泡沫模型。从那时起,其他研究小组已经指出,这种改进的模型如何解决一些长期存在的自旋泡沫问题。这些可能性,以及自旋泡沫中的其他问题,将在本奖项中进行研究。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantum isotropy and the reduction of dynamics in Bianchi I
  • DOI:
    10.1088/1361-6382/ac337c
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    C. Beetle;J. Engle;M. Hogan;P. Mendonca
  • 通讯作者:
    C. Beetle;J. Engle;M. Hogan;P. Mendonca
The accidental flatness constraint does not mean a wrong classical limit
  • DOI:
    10.1088/1361-6382/ac655e
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    J. Engle;C. Rovelli
  • 通讯作者:
    J. Engle;C. Rovelli
Addendum to ‘EPRL/FK asymptotics and the flatness problem’
附录“EPRL/FK 渐进性和平坦度问题”
  • DOI:
    10.1088/1361-6382/abf897
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Engle, J;Kaminski, W;Oliveira, J
  • 通讯作者:
    Oliveira, J
Entanglement entropy of Bell-network states in loop quantum gravity: Analytical and numerical results
圈量子引力中贝尔网络态的纠缠熵:分析和数值结果
  • DOI:
    10.1103/physrevd.99.086013
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Bianchi, Eugenio;Donà, Pietro;Vilensky, Ilya
  • 通讯作者:
    Vilensky, Ilya
Uniqueness of minimal loop quantum cosmology dynamics
  • DOI:
    10.1103/physrevd.100.121901
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    5
  • 作者:
    J. Engle;Ilya Vilensky
  • 通讯作者:
    J. Engle;Ilya Vilensky
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Engle其他文献

Diffeomorphism Covariance and the Quantum Schwarzschild Interior
微分同胚协方差和量子史瓦西内部
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Ian W. Bornhoeft;Rafael G. Dias;Jonathan Engle
  • 通讯作者:
    Jonathan Engle
<sup>225</sup>Ac-NM600 Targeted Alpha Therapy Extends Survival in a Model of Triple Negative Breast Cancer
  • DOI:
    10.1016/j.jmir.2019.11.112
  • 发表时间:
    2019-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Reinier Hernandez;Eduardo Aluicio-Sarduy;Joseph Grudzinski;Christopher Massey;Ariana Bitton;Jonathan Engle;Jamey Weichert
  • 通讯作者:
    Jamey Weichert
Correction to: Uniqueness of the Representation in Homogeneous Isotropic LQC
  • DOI:
    10.1007/s00220-018-3188-7
  • 发表时间:
    2018-07-30
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Jonathan Engle;Maximilian Hanusch;Thomas Thiemann
  • 通讯作者:
    Thomas Thiemann
Relating loop quantum cosmology to loop quantum gravity: symmetric sectors and embeddings
  • DOI:
    10.1088/0264-9381/24/23/004
  • 发表时间:
    2007-01
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Jonathan Engle
  • 通讯作者:
    Jonathan Engle

Jonathan Engle的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan Engle', 18)}}的其他基金

Conference: Loops '24 Conference
会议:Loops 24 会议
  • 批准号:
    2420412
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Dynamics and Symmetry in Quantum Gravity
量子引力的动力学和对称性
  • 批准号:
    2110234
  • 财政年份:
    2021
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Dynamics and Symmetry in Quantum Gravity
量子引力的动力学和对称性
  • 批准号:
    1505490
  • 财政年份:
    2015
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Travel Support for U.S. Graduate Students and Postdocs in the 2nd BNU International Summer School on Quantum Gravity, August 13-18, 2012
为美国研究生和博士后参加第二届北京师范大学量子引力国际暑期学校提供差旅支持,2012年8月13-18日
  • 批准号:
    1237510
  • 财政年份:
    2012
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Dynamics and Symmetry in Quantum Gravity
量子引力的动力学和对称性
  • 批准号:
    1205968
  • 财政年份:
    2012
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
International Research Fellowship Program: Moving Forward in Loop Quantum Gravity Via Self-Duality
国际研究奖学金计划:通过自对偶性推进环量子引力
  • 批准号:
    0601844
  • 财政年份:
    2006
  • 资助金额:
    $ 18万
  • 项目类别:
    Fellowship Award

相似国自然基金

基于级联环形微腔PT-Symmetry效应的芯片级全光开关
  • 批准号:
    61675185
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAS: Highly Interacting Panchromatic Push-Pull Systems: Symmetry Breaking and Quantum Coherence in Electron Transfer
CAS:高度交互的全色推拉系统:电子转移中的对称破缺和量子相干性
  • 批准号:
    2345836
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Topological quantum matter and crystalline symmetry
拓扑量子物质和晶体对称性
  • 批准号:
    2345644
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Symmetry and measurement: a foundation for semi-local quantum physics
对称性与测量:半定域量子物理的基础
  • 批准号:
    EP/Y000099/1
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Research Grant
Using symmetry to enhance quantum batteries and heat engines
利用对称性增强量子电池和热机
  • 批准号:
    23K03290
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CQIS: RUI: Quantum Resources via Free Operation Symmetry
CQIS:RUI:通过自由操作对称的量子资源
  • 批准号:
    2309157
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Quivers in quantum symmetry: a path algebra framework for algebras in tensor categories
量子对称性中的颤动:张量范畴代数的路径代数框架
  • 批准号:
    2303334
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
CAREER: Quantum defects in two-dimensional materials by local-symmetry-guided data-driven design
职业:通过局域对称引导的数据驱动设计研究二维材料中的量子缺陷
  • 批准号:
    2314050
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Nonperturbative Study of Quantum Field Theories in view of Generalized Symmetry
广义对称性下量子场论的非微扰研究
  • 批准号:
    22H01218
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Numerical study on critical properties of topological quantum systems with broken translational symmetry
平动对称性破缺拓扑量子系统临界性质的数值研究
  • 批准号:
    22K03446
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Integrable deformations with twisted quantum affine symmetry
具有扭曲量子仿射对称性的可积分变形
  • 批准号:
    2713401
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了