Dynamics and Symmetry in Quantum Gravity
量子引力的动力学和对称性
基本信息
- 批准号:2110234
- 负责人:
- 金额:$ 19.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-15 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
An important question facing fundamental physics is how the well-tested laws of Einstein's theory of gravity and quantum mechanics are consistent - the question of quantum gravity. This question is central for understanding the very origin of our universe, the big bang, as well as for understanding the final fate of black holes. The award seeks to bridge the gap between the full theory of loop quantum gravity (LQG) and simplified models of cosmology and black holes based on LQG that have been recently successful in making potential observational predictions. Such a bridge would allow future comparisons of such models with data to tell us exact details about the fundamental laws of quantum gravity. By enabling graduate students to participate in frontier physics, and to interact with other research groups, this award will have a broad and long-term impact on the development of future scientists. The results of the research will be disseminated to the scientific community through peer reviewed publication and scientific lectures, as well as to the general public through public lectures and other means. The observational consequences, for both cosmology and black holes, of different proposals for dynamics in LQG will be determined. To accomplish this, the PI will first find an embedding of states from the simplified quantum cosmological model - Loop Quantum Cosmology (LQC) - into diffeomorphism invariant LQG states that satisfy the diffeomorphism invariant, quantum criterion for homogeneity and isotropy recently established by the PI’s group. This embedding will enable different proposals for dynamics in LQG to be translated into LQC, and thereby to distinguish their observational consequences using established methods. The task of finding the corresponding LQC dynamics is simplified by the severe restriction on the resulting possibilities proven recently by the PI’s group from diffeomorphism invariance. An analogous strategy will be carried out for black holes. The PI additionally plans to further develop the sum over histories approach to LQG, known as spin-foams. In prior work of the PI, the prevailing EPRL model of spin-foams was modified to correct its semiclassical limit, yielding the `proper spin-foam model’. Efficient numerical methods will be developed to perform calculations using this model. Possibilities for solving long-standing issues in spin-foams will be explored.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
基础物理学面临的一个重要问题是,爱因斯坦的引力理论和量子力学中久经考验的定律如何保持一致--量子引力问题。这个问题对于理解我们宇宙的起源,大爆炸,以及理解黑洞的最终命运至关重要。 该奖项旨在弥合环圈量子引力(LQG)的完整理论与基于LQG的宇宙学和黑洞简化模型之间的差距,这些模型最近成功地做出了潜在的观测预测。这样的桥梁将允许将来将这些模型与数据进行比较,以告诉我们量子引力基本定律的确切细节。通过使研究生能够参与前沿物理学,并与其他研究小组互动,该奖项将对未来科学家的发展产生广泛而长期的影响。研究结果将通过同行评审的出版物和科学讲座向科学界传播,并通过公开讲座和其他方式向公众传播。 观测结果,宇宙学和黑洞,不同的建议,在LQG动力学将被确定。 为了实现这一点,PI将首先从简化的量子宇宙学模型-圈量子宇宙学(LQC)-中找到一个嵌入态,嵌入到满足PI小组最近建立的同质性和各向同性的量子态不变LQG态中。这种嵌入将使LQG中的不同动力学建议能够转化为LQC,从而使用已建立的方法区分它们的观测结果。找到相应的LQC动力学的任务是简化了严重的限制,最近证明了由PI的组从自同构不变性的可能性。对于黑洞,也将采取类似的策略。PI还计划进一步开发LQG的历史求和方法,称为自旋泡沫。 在PI之前的工作中,修改了流行的EPRL自旋泡沫模型,以纠正其半经典极限,从而产生了“适当的自旋泡沫模型”。将开发有效的数值方法来使用该模型进行计算。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantum isotropy and the reduction of dynamics in Bianchi I
- DOI:10.1088/1361-6382/ac337c
- 发表时间:2021-02
- 期刊:
- 影响因子:3.5
- 作者:C. Beetle;J. Engle;M. Hogan;P. Mendonca
- 通讯作者:C. Beetle;J. Engle;M. Hogan;P. Mendonca
The accidental flatness constraint does not mean a wrong classical limit
- DOI:10.1088/1361-6382/ac655e
- 发表时间:2021-11
- 期刊:
- 影响因子:3.5
- 作者:J. Engle;C. Rovelli
- 通讯作者:J. Engle;C. Rovelli
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Engle其他文献
Diffeomorphism Covariance and the Quantum Schwarzschild Interior
微分同胚协方差和量子史瓦西内部
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:2.9
- 作者:
Ian W. Bornhoeft;Rafael G. Dias;Jonathan Engle - 通讯作者:
Jonathan Engle
<sup>225</sup>Ac-NM600 Targeted Alpha Therapy Extends Survival in a Model of Triple Negative Breast Cancer
- DOI:
10.1016/j.jmir.2019.11.112 - 发表时间:
2019-12-01 - 期刊:
- 影响因子:
- 作者:
Reinier Hernandez;Eduardo Aluicio-Sarduy;Joseph Grudzinski;Christopher Massey;Ariana Bitton;Jonathan Engle;Jamey Weichert - 通讯作者:
Jamey Weichert
Correction to: Uniqueness of the Representation in Homogeneous Isotropic LQC
- DOI:
10.1007/s00220-018-3188-7 - 发表时间:
2018-07-30 - 期刊:
- 影响因子:2.600
- 作者:
Jonathan Engle;Maximilian Hanusch;Thomas Thiemann - 通讯作者:
Thomas Thiemann
Relating loop quantum cosmology to loop quantum gravity: symmetric sectors and embeddings
- DOI:
10.1088/0264-9381/24/23/004 - 发表时间:
2007-01 - 期刊:
- 影响因子:3.5
- 作者:
Jonathan Engle - 通讯作者:
Jonathan Engle
Jonathan Engle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Engle', 18)}}的其他基金
Dynamics and Symmetry in Quantum Gravity
量子引力的动力学和对称性
- 批准号:
1806290 - 财政年份:2018
- 资助金额:
$ 19.5万 - 项目类别:
Continuing Grant
Dynamics and Symmetry in Quantum Gravity
量子引力的动力学和对称性
- 批准号:
1505490 - 财政年份:2015
- 资助金额:
$ 19.5万 - 项目类别:
Continuing Grant
Travel Support for U.S. Graduate Students and Postdocs in the 2nd BNU International Summer School on Quantum Gravity, August 13-18, 2012
为美国研究生和博士后参加第二届北京师范大学量子引力国际暑期学校提供差旅支持,2012年8月13-18日
- 批准号:
1237510 - 财政年份:2012
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Dynamics and Symmetry in Quantum Gravity
量子引力的动力学和对称性
- 批准号:
1205968 - 财政年份:2012
- 资助金额:
$ 19.5万 - 项目类别:
Continuing Grant
International Research Fellowship Program: Moving Forward in Loop Quantum Gravity Via Self-Duality
国际研究奖学金计划:通过自对偶性推进环量子引力
- 批准号:
0601844 - 财政年份:2006
- 资助金额:
$ 19.5万 - 项目类别:
Fellowship Award
相似国自然基金
基于级联环形微腔PT-Symmetry效应的芯片级全光开关
- 批准号:61675185
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
CAS: Highly Interacting Panchromatic Push-Pull Systems: Symmetry Breaking and Quantum Coherence in Electron Transfer
CAS:高度交互的全色推拉系统:电子转移中的对称破缺和量子相干性
- 批准号:
2345836 - 财政年份:2024
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Topological quantum matter and crystalline symmetry
拓扑量子物质和晶体对称性
- 批准号:
2345644 - 财政年份:2024
- 资助金额:
$ 19.5万 - 项目类别:
Continuing Grant
Symmetry and measurement: a foundation for semi-local quantum physics
对称性与测量:半定域量子物理的基础
- 批准号:
EP/Y000099/1 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Research Grant
Using symmetry to enhance quantum batteries and heat engines
利用对称性增强量子电池和热机
- 批准号:
23K03290 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CQIS: RUI: Quantum Resources via Free Operation Symmetry
CQIS:RUI:通过自由操作对称的量子资源
- 批准号:
2309157 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Quivers in quantum symmetry: a path algebra framework for algebras in tensor categories
量子对称性中的颤动:张量范畴代数的路径代数框架
- 批准号:
2303334 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
CAREER: Quantum defects in two-dimensional materials by local-symmetry-guided data-driven design
职业:通过局域对称引导的数据驱动设计研究二维材料中的量子缺陷
- 批准号:
2314050 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Continuing Grant
Nonperturbative Study of Quantum Field Theories in view of Generalized Symmetry
广义对称性下量子场论的非微扰研究
- 批准号:
22H01218 - 财政年份:2022
- 资助金额:
$ 19.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Numerical study on critical properties of topological quantum systems with broken translational symmetry
平动对称性破缺拓扑量子系统临界性质的数值研究
- 批准号:
22K03446 - 财政年份:2022
- 资助金额:
$ 19.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrable deformations with twisted quantum affine symmetry
具有扭曲量子仿射对称性的可积分变形
- 批准号:
2713401 - 财政年份:2022
- 资助金额:
$ 19.5万 - 项目类别:
Studentship