Investigating Laser-Activation of Structured Polymer Materials for Drug Delivery
研究用于药物输送的结构化聚合物材料的激光激活
基本信息
- 批准号:1806434
- 负责人:
- 金额:$ 83.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI recently discovered that laser-activation of certain polymers performs effective cargo delivery. As polymers are biocompatible, cheap, and easily integrated, the work in this project plans to leverage this recent (unexpected, and as-of-yet not understood) discovery to fabricate and characterize laser-activated polymers, with the aim of better equipping the biomedical field with novel in vivo cargo-delivery methods that harness laser-activated materials. While advancing discovery, the work will also contribute to the education and the training of future multidisciplinary scientists and engineers through research-based education of undergraduate and graduate students. Through the Mazur Group's work with local high schools, NSF sponsored programs, and the high representation of women in his research group, they will broaden participation of underrepresented groups. Finally, using the group's well-established program integrating outreach and public education with research, this work will be broadly disseminated to the general public.This project is for investigating the newly discovered phenomenon of laser-activation of polymers with an eye toward developing light-activated polymer materials that are flexible in structure, patterned, biodegradable, and easy to implant into the body, unlike traditional metallic nanofabricated substrates, for the delivery of payloads into cells. The goals of this project are to: 1) study the fundamental physics of the light-matter interactions of these polymer materials and cells; and 2) develop and apply these light-activated polymer materials for biomedical engineering applications. Developing new approaches for cell therapy and regenerative medicine, as well as studying modified gene expression, requires efficient and safe introduction of genetic vectors into mammalian cells. There is a biomedical need for gene delivery modalities that are efficient and non-toxic and that and can treat a large number of cells in a short amount of time. Being able to have a highly efficient cargo delivery method while maintaining cell viability and medically relevant treatment throughput would revolutionize nanomedicine and open the door to new cell therapies and regenerative medicine. In summary, this project focuses on studying the fundamental physics of light-matter interaction of various structures composed of polymer and bioplastic materials and properties in a liquid environment. The motivation is to create a flexible and biocompatible platform for transfection in implantable materials. It is important to characterize material properties to determine how biocompatible and viable these materials may be for different sensitive cell types. Developing a strong design and understanding of a new biomaterial will open avenues to trigger delivery in a non-invasive manner using light-activation within a patient. Due to the ease of fabrication and scalability of structured polymer surfaces to be used in this project, there is great potential to maximize throughput for clinical applications. This proposed research could be truly transformative to the field of cargo delivery and provide an enormous opportunity for active implants. Beyond demonstrating cargo delivery with laser-activated structured polymer and bioplastic materials and their use in biomedical applications, the work will also explore several fundamental topics as follows: (1) identifying what effects govern successful light-polymer interaction for cell poration; (2) characterizing the pressure wave perturbation and bubble formation, when excited with different types of laser (pulsed and continuous wave) on structured polymer materials through experimental measurements; (3) establishing guidelines for designing a wide variety of structured polymer and bioplastic materials; and (4) identifying properties that dictate favorable cell attachment to these structured materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PI最近发现,某些聚合物的激光激活可以有效地运送货物。由于聚合物具有生物相容性,廉价且易于集成,因此该项目中的工作计划利用这一最新(意想不到的,尚未理解的)发现来制造和表征激光活化聚合物,目的是更好地为生物医学领域提供利用激光活化材料的新型体内货物递送方法。 在推进发现的同时,这项工作还将通过对本科生和研究生的研究型教育,为未来多学科科学家和工程师的教育和培训做出贡献。通过马祖尔集团与当地高中的合作,NSF赞助的项目,以及妇女在他的研究小组中的高代表性,他们将扩大代表性不足的群体的参与。最后,本计画将透过本研究所的外展、教育与研究相结合的计画,将这项研究成果广泛地传播给大众。本计画是研究高分子的雷射活化新现象,并着眼于开发结构灵活、图案化、可生物分解、易于植入体内的光活化高分子材料,与传统的金属纳米制造基底不同,用于将有效载荷递送到细胞中。该项目的目标是:1)研究这些聚合物材料和细胞的光-物质相互作用的基础物理; 2)开发和应用这些光激活聚合物材料用于生物医学工程应用。开发细胞治疗和再生医学的新方法,以及研究修饰的基因表达,需要将遗传载体有效和安全地引入哺乳动物细胞。生物医学上需要高效且无毒的基因递送方式,并且可以在短时间内处理大量细胞。能够拥有高效的货物递送方法,同时保持细胞活力和医学相关的治疗通量,将彻底改变纳米医学,并为新的细胞疗法和再生医学打开大门。总之,该项目的重点是研究由聚合物和生物塑料材料组成的各种结构的光-物质相互作用的基础物理学以及在液体环境中的性质。其动机是创造一个灵活的和生物相容的平台,用于在可植入材料中转染。重要的是表征材料特性,以确定这些材料对于不同敏感细胞类型的生物相容性和可行性。开发强大的设计和对新生物材料的理解将为在患者体内使用光激活以非侵入性方式触发递送开辟道路。由于该项目中使用的结构化聚合物表面易于制造和可扩展性,因此有很大的潜力使临床应用的吞吐量最大化。这项拟议中的研究可能对货物运输领域产生真正的变革,并为主动植入物提供巨大的机会。除了展示激光激活结构聚合物和生物塑料材料的货物输送及其在生物医学应用中的应用外,这项工作还将探索以下几个基本主题:(1)确定什么影响了成功的光-聚合物相互作用,用于细胞穿孔;(2)表征压力波扰动和气泡形成,当用不同类型的激光激发时(3)建立用于设计各种各样的结构化聚合物和生物塑料材料的准则;以及(4)确定决定细胞与这些结构材料良好附着的特性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Mazur其他文献
Nonlinear optical effect of nano periodic surface patterning using coherent long-range surface plasmon polaritons excited by femtosecond laser
使用飞秒激光激发的相干长程表面等离子体激元的纳米周期性表面图案的非线性光学效应
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Hisashi Shimizu;Go Obara;Mitsuhiro Terakawa;Eric Mazur;Minoru Obara;Go Obara;小原 豪;小原 豪;小原 豪 - 通讯作者:
小原 豪
Invited paperFourier-transform heterodyne spectroscopy of liquid and solid surfaces
- DOI:
10.1007/s003400050137 - 发表时间:
1996-12-01 - 期刊:
- 影响因子:2.000
- 作者:
Doo Soo Chung;Ka Yee Lee;Eric Mazur - 通讯作者:
Eric Mazur
Growth evolution of high spatial frequency LIPSS on SiC crystal surfaces
SiC 晶体表面高空间频率 LIPSS 的生长演化
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Hisashi Shimizu;Go Obara;Mitsuhiro Terakawa;Eric Mazur;Minoru Obara;Go Obara - 通讯作者:
Go Obara
Femtosecond laser micromachining in transparent materials
透明材料中的飞秒激光微加工
- DOI:
10.1038/nphoton.2008.47 - 发表时间:
2008-04-01 - 期刊:
- 影响因子:32.900
- 作者:
Rafael R. Gattass;Eric Mazur - 通讯作者:
Eric Mazur
An adaptive moiré sensor for spectro-polarimetric hyperimaging
一种用于光谱偏振超成像的自适应莫尔传感器
- DOI:
10.1038/s41566-025-01650-z - 发表时间:
2025-04-03 - 期刊:
- 影响因子:32.900
- 作者:
Haoning Tang;Beicheng Lou;Fan Du;Guangqi Gao;Mingjie Zhang;Xueqi Ni;Evelyn Hu;Amir Yacoby;Yuan Cao;Shanhui Fan;Eric Mazur - 通讯作者:
Eric Mazur
Eric Mazur的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Mazur', 18)}}的其他基金
EAGER: Moire Cavity Single Emitter Lasers (MOCSELs)
EAGER:莫尔腔单发射激光器 (MOCSEL)
- 批准号:
2234513 - 财政年份:2023
- 资助金额:
$ 83.06万 - 项目类别:
Standard Grant
EAGER: Researching Team-Based Learning in High-School Physics Classes
EAGER:研究高中物理课程中的团队学习
- 批准号:
2333904 - 财政年份:2023
- 资助金额:
$ 83.06万 - 项目类别:
Continuing Grant
Workshops: Using Physics Education Research to Improve High and Middle School Physics
研讨会:利用物理教育研究提高高中物理水平
- 批准号:
2025683 - 财政年份:2020
- 资助金额:
$ 83.06万 - 项目类别:
Standard Grant
EAGER: Physics of Living Systems Teacher (PoLST) Network: Increasing Student Conceptual Understanding of High School Physics
EAGER:生命系统物理教师 (PoLST) 网络:提高学生对高中物理的概念理解
- 批准号:
2016294 - 财政年份:2020
- 资助金额:
$ 83.06万 - 项目类别:
Standard Grant
Strongly Extended Superradiance in Diamond Meta-Materials
金刚石超常材料中强烈扩展的超辐射度
- 批准号:
1720438 - 财政年份:2017
- 资助金额:
$ 83.06万 - 项目类别:
Continuing Grant
REU Site: Biomaterials Research Initiative Dedicated to Gateway Experiences
REU 网站:致力于门户体验的生物材料研究计划
- 批准号:
1559890 - 财政年份:2016
- 资助金额:
$ 83.06万 - 项目类别:
Standard Grant
Bringing Team-Based, Project-Based Learning to Scale
扩大基于团队、基于项目的学习
- 批准号:
1504664 - 财政年份:2015
- 资助金额:
$ 83.06万 - 项目类别:
Standard Grant
Integrated Photonic Chips for Generating Entangled Photon Triplets
用于生成纠缠光子三联体的集成光子芯片
- 批准号:
1415236 - 财政年份:2014
- 资助金额:
$ 83.06万 - 项目类别:
Continuing Grant
Low-Loss, Impedance-Matched Dirac-Cone Metamaterials for Integrated Optics
用于集成光学的低损耗、阻抗匹配狄拉克锥超材料
- 批准号:
1360889 - 财政年份:2014
- 资助金额:
$ 83.06万 - 项目类别:
Continuing Grant
REU Site: Biomaterials Research Initiative Dedicated to Gateway Experiences (BRIDGE)
REU 网站:致力于网关体验的生物材料研究计划 (BRIDGE)
- 批准号:
1262895 - 财政年份:2013
- 资助金额:
$ 83.06万 - 项目类别:
Continuing Grant
相似国自然基金
基于激光与管电极电解同步复合(Laser-STEM)的低损伤大深度小孔加工技术基础研究
- 批准号:51905525
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
长链非编码RNA lnc-LASER通过HNF-1α-PCSK9 调控肝脏胆固醇平衡的机制研究
- 批准号:81600343
- 批准年份:2016
- 资助金额:17.5 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of GaN superjunction devices with pGaN ArF laser activation for high power application
开发用于高功率应用的具有 pGaN ArF 激光激活的 GaN 超结器件
- 批准号:
22K20438 - 财政年份:2022
- 资助金额:
$ 83.06万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Study for the efect of excimer laser on melanocyte activation
准分子激光对黑素细胞活化作用的研究
- 批准号:
21K08359 - 财政年份:2021
- 资助金额:
$ 83.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of laser-irradiated acceptor activation technology of GaN super junction power devices for high-efficiency power systems
用于高效电力系统的GaN超级结功率器件的激光辐照受主激活技术的开发
- 批准号:
18K18866 - 财政年份:2018
- 资助金额:
$ 83.06万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Periodontal metabolic activation during tooth movement using cold laser and clinical application
冷激光牙齿移动过程中牙周代谢激活及临床应用
- 批准号:
18K17257 - 财政年份:2018
- 资助金额:
$ 83.06万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Activation of MALDI plume based on non-dissociative ionization by femtosecond laser fields
基于飞秒激光场非解离电离的 MALDI 羽流激活
- 批准号:
23550026 - 财政年份:2011
- 资助金额:
$ 83.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Activation of Thermonociceptors by Infrared Diode Laser
红外二极管激光激活热痛感受器
- 批准号:
7059294 - 财政年份:2005
- 资助金额:
$ 83.06万 - 项目类别:
Activation of Thermonociceptors by Infrared Diode Laser
红外二极管激光激活热痛感受器
- 批准号:
7008606 - 财政年份:2005
- 资助金额:
$ 83.06万 - 项目类别:
Activation of Thermonociceptors by Infrared Diode Laser
红外二极管激光激活热痛感受器
- 批准号:
6869993 - 财政年份:2005
- 资助金额:
$ 83.06万 - 项目类别:
Application Possibility of a semiconductor blue laser to Dental Light Activation Unit
半导体蓝色激光器在牙科光激活装置中的应用可能性
- 批准号:
15592036 - 财政年份:2003
- 资助金额:
$ 83.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)