Pin(2)-Symmetry in Monopole Floer Homology

单极Floer同调中的Pin(2)-对称性

基本信息

  • 批准号:
    1807242
  • 负责人:
  • 金额:
    $ 16.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2019-09-30
  • 项目状态:
    已结题

项目摘要

The main focus of this National Science Foundation funded project is the interaction between two areas of research known as gauge theory and low-dimensional topology. The former is the language in which many physical theories are formulated, while the latter studies the shapes of three- and four-dimensional spaces. It is common to apply knowledge of geometry to predict the behavior of physical systems. For example, it is straightforward to predict the sound of a drum from its shape. The opposite approach is sometimes also feasible; in particular, the study of differential equations originating from gauge theories can lead to very deep insights about the topology of spaces. In recent ground-breaking work, Ciprian Manolescu disproved the almost hundred-year-old Triangulation conjecture, which roughly asserted that in higher dimensions, every space can be cut into very simple pieces. The main goal of this project is to use the PI's recently developed computational techniques to understand in greater detail several properties of the object studied by Manolescu, called the three-dimensional homology cobordism group.This project has two main goals. First, to explore the properties of Pin(2)-monopole Floer homology, a package of invariants of three-manifolds defined in analogy to Manolescu's construction within the Morse-theoretic framework of Kronheimer and Mrowka. The Pin(2)-symmetry is reflected in an extremely rich A-infinity structure on these invariants, and we will focus on understanding the higher operations and their implications for natural topological operations such as connected sums. Second, to apply these tools to study problems in low-dimensional topology, focusing particularly on the homology cobordism group in dimension three. Very little is known about this group, especially regarding the existence of torsion, and Pin(2)-monopole Floer homology may provide an avenue to solve many of these problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
国家科学基金会资助的这个项目的主要焦点是规范理论和低维拓扑学这两个研究领域之间的相互作用。前者是许多物理理论形成的语言,而后者研究三维和四维空间的形状。应用几何知识来预测物理系统的行为是很常见的。例如,根据鼓的形状可以直接预测鼓的声音。相反的方法有时也是可行的;特别是,对源自规范理论的微分方程的研究可以导致对空间拓扑的非常深刻的见解。在最近的开创性工作中,齐普里安·马诺莱斯库驳斥了近百年来的三角测量猜想,该猜想粗略地断言,在更高的维度,每个空间都可以被切成非常简单的碎片。这个项目的主要目标是使用PI最近发展的计算技术来更详细地了解Manolescu研究的对象的几个性质,称为三维同调余边群。这个项目有两个主要目标。首先,为了探讨Pin(2)-单极子Floer同调的性质,在Kronheimer和Mrowka的Morse理论框架下,类似于Manolescu的构造定义了一组三维流形的不变量。Pin(2)-对称性反映在这些不变量上极其丰富的A-无穷结构中,我们将重点了解更高的运算及其对自然拓扑运算(如连通和)的影响。其次,将这些工具应用于研究低维拓扑中的问题,特别是三维空间中的同调余边群。人们对这一群体知之甚少,特别是关于扭转的存在,而Pin(2)-单极Floer同源可能提供了一种解决其中许多问题的途径。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Francesco Lin其他文献

Non-formality in $mathrm{Pin}(2)$-monopole Floer homology
$mathrm{Pin}(2)$-单极弗洛尔同调中的非形式化
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Francesco Lin
  • 通讯作者:
    Francesco Lin
Topology of the Dirac equation on spectrally large three-manifolds
  • DOI:
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Francesco Lin
  • 通讯作者:
    Francesco Lin
Monopole Floer homology and invariant theta characteristics
Homology cobordism and the geometry of hyperbolic three-manifolds
同调共边与双曲三流形的几何
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Francesco Lin
  • 通讯作者:
    Francesco Lin
PIN(2)-monopole Floer homology and the Rokhlin invariant
PIN(2)-单极弗洛尔同源性和 Rokhlin 不变量
  • DOI:
    10.1112/s0010437x18007510
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Francesco Lin
  • 通讯作者:
    Francesco Lin

Francesco Lin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Francesco Lin', 18)}}的其他基金

Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
  • 批准号:
    2349401
  • 财政年份:
    2024
  • 资助金额:
    $ 16.79万
  • 项目类别:
    Standard Grant
New Directions in Monopole Floer Homology
单极子同源性的新方向
  • 批准号:
    2203498
  • 财政年份:
    2022
  • 资助金额:
    $ 16.79万
  • 项目类别:
    Standard Grant
Reflections on Geometry: 3-Manifolds, Groups, and Singularities
几何思考:3-流形、群和奇点
  • 批准号:
    2011256
  • 财政年份:
    2020
  • 资助金额:
    $ 16.79万
  • 项目类别:
    Standard Grant
Pin(2)-Symmetry in Monopole Floer Homology
单极Floer同调中的Pin(2)-对称性
  • 批准号:
    1948820
  • 财政年份:
    2019
  • 资助金额:
    $ 16.79万
  • 项目类别:
    Standard Grant

相似国自然基金

基于级联环形微腔PT-Symmetry效应的芯片级全光开关
  • 批准号:
    61675185
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

RTG: Numbers, Geometry, and Symmetry at Berkeley
RTG:伯克利分校的数字、几何和对称性
  • 批准号:
    2342225
  • 财政年份:
    2024
  • 资助金额:
    $ 16.79万
  • 项目类别:
    Continuing Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344489
  • 财政年份:
    2024
  • 资助金额:
    $ 16.79万
  • 项目类别:
    Standard Grant
CAS: Highly Interacting Panchromatic Push-Pull Systems: Symmetry Breaking and Quantum Coherence in Electron Transfer
CAS:高度交互的全色推拉系统:电子转移中的对称破缺和量子相干性
  • 批准号:
    2345836
  • 财政年份:
    2024
  • 资助金额:
    $ 16.79万
  • 项目类别:
    Standard Grant
Conference: Symmetry and Geometry in South Florida
会议:南佛罗里达州的对称与几何
  • 批准号:
    2350239
  • 财政年份:
    2024
  • 资助金额:
    $ 16.79万
  • 项目类别:
    Standard Grant
Nuclear deformation and symmetry breaking from an ab-initio perspective
从头算角度看核变形和对称性破缺
  • 批准号:
    MR/Y034007/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.79万
  • 项目类别:
    Fellowship
Topological quantum matter and crystalline symmetry
拓扑量子物质和晶体对称性
  • 批准号:
    2345644
  • 财政年份:
    2024
  • 资助金额:
    $ 16.79万
  • 项目类别:
    Continuing Grant
Symmetry Methods for Discrete Equations and Their Applications
离散方程的对称性方法及其应用
  • 批准号:
    24K06852
  • 财政年份:
    2024
  • 资助金额:
    $ 16.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Homological Algebra of Landau-Ginzburg Mirror Symmetry
Landau-Ginzburg 镜像对称的同调代数
  • 批准号:
    EP/Y033574/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.79万
  • 项目类别:
    Research Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344490
  • 财政年份:
    2024
  • 资助金额:
    $ 16.79万
  • 项目类别:
    Standard Grant
Bulk-edge correspondence and symmetry of strongly correlated topological pump
强相关拓扑泵的体边对应和对称性
  • 批准号:
    23H01091
  • 财政年份:
    2023
  • 资助金额:
    $ 16.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了