Multiscale Computational and Experimental Analysis of Deformation Mechanisms in Amorphous-Crystalline Metallic Materials with Microstructure Complexity

微结构复杂非晶金属材料变形机制的多尺度计算与实验分析

基本信息

  • 批准号:
    1807545
  • 负责人:
  • 金额:
    $ 46.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL SUMMARYEnhancing the strength of a material is always at the expense of its ability to be purposely deformed or shaped, referred as ductility. Recently, inspired by biological materials, like nacre and dental enamel, a novel metallic composite which combines amorphous alloys (called metallic glass) with crystalline metals, such as copper or aluminum, is shown to have an appreciable strength improvement without sacrificing its ductility. However, up to date, the development of such materials is still at a 'trial and error' stage because: (i) the integration of metallic glass with crystalline metals leads to a complex material microstructure spanning a wide range of length scales from nanometers at the atomic scale to microns; (ii) many existing techniques, which either resolve the material as a collection of atoms or approximate it as a deformable body without considering its internal structure, are incapable to provide a full-scale interpretation on how such material responds to a mechanical forces like tension, compression, or shear. This project supports research addressing these problems through a combined computational and experimental analysis of the deformation in metallic composites over a range of length scales. This research will link the atomistic deformation physics with its overall mechanical performance. Two fundamental questions to be answered are: (a) how does the interface between the amorphous and crystalline phases contribute to their co-deformation? (b) how to architect the metallic composite microstructure such that its failure can be delayed? This research will advance the field by providing researchers with a platform that can be used in a rational design of high-performance materials for a variety of engineering applications such as biomedical implants, aircraft structures, and energy infrastructures. It will expose the next-generation workforce to a broad range of knowledge and skills related to mathematics, physics, mechanics, supercomputing, materials synthesis, processing, and characterization. Moreover, several kits of metallic composites will be developed for illustrating how little changes of the volume amounts of each phase in composites can significantly change its properties. These kits will be presented to science teachers at Gilbert middle and high schools in Iowa for promoting science and engineering to K-12 students.TECHNICAL SUMMARYIn the search of strong and ductile metallic materials, one strategy is introducing interfaces, such as grain boundaries and twin boundaries, to resist dislocation motions. This strategy is usually accompanied by a decrease in ductility although it does lead to an enhancement in strength. By contrast, instead of blocking dislocations, the amorphous-crystalline metallic composites utilize the amorphous phases to absorb dislocations, and may fundamentally change 'the strength-ductility dilemma'. Nevertheless, a methodical engineering approach for developing such composites is not achieved so far due to a knowledge gap in correlating its multi-level microstructure with the overall mechanical performance. This project supports research to fill this gap. The mechanical behavior of amorphous-crystalline metallic composites with microstructure complexities will be analyzed from the atomistic to the microscale. Concurrent atomistic-continuum models that resemble the microstructure of the amorphous-crystalline metallic composite fabricated at the Department of Energy-Ames Laboratory will be developed. Multiscale simulations of plastic flow in such material will be conducted to gain the insight into the interplay between dislocations and shear transformation zones. The intrinsic difference in mechanisms for the deformation in magnetron sputtered orthotropic nano-laminates and ball-milled polycrystalline aggregates will be identified. This research opens up the possibility of architecting the metallic composites microstructure for a desired property. Many aspects of this research will not be limited to metals but are readily extendable to other classes of materials, such as biomimetic ceramics, metallic glass-based composites for electromechanical devices, corrosion-, and radiation-resistant materials for nuclear power plants.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术概述增强材料的强度总是以牺牲其有目的地变形或成形的能力为代价,称为延展性。最近,受珍珠层和牙釉质等生物材料的启发,将非晶合金(称为金属玻璃)与结晶金属(例如铜或铝)结合的新型金属复合材料显示出具有明显的强度改善而不牺牲其延展性。然而,到目前为止,这种材料的开发仍然处于“试错”阶段,因为:(i)金属玻璃与晶体金属的集成导致复杂的材料微观结构,其跨越从原子尺度的纳米到微米的宽范围的长度尺度;(ii)许多现有技术,其将材料分解为原子的集合或将其近似为可变形体而不考虑其内部结构,不能提供关于这种材料如何响应于机械力(如拉伸、压缩或剪切)的全面解释。该项目通过对金属复合材料在一系列长度尺度上的变形进行计算和实验分析,支持解决这些问题的研究。这项研究将把原子变形物理与其整体力学性能联系起来。要回答的两个基本问题是:(a)非晶相和晶相之间的界面如何有助于它们的共同变形?(b)如何设计金属复合材料的微观结构,使其失效可以延迟?这项研究将通过为研究人员提供一个平台来推动该领域的发展,该平台可用于各种工程应用的高性能材料的合理设计,如生物医学植入物,飞机结构和能源基础设施。它将使下一代劳动力接触到与数学,物理,力学,超级计算,材料合成,加工和表征相关的广泛知识和技能。此外,将开发几套金属复合材料,以说明复合材料中每相体积量的微小变化如何显著改变其性能。这些工具包将提交给爱荷华州的吉尔伯特初中和高中的科学教师,用于向K-12学生推广科学和工程学。技术概述在寻找强韧性金属材料时,一种策略是引入界面,如晶界和孪晶界,以抵抗位错运动。这种策略通常伴随着延展性的降低,尽管它确实导致强度的增强。相比之下,非晶-晶态金属复合材料利用非晶相吸收位错,而不是阻挡位错,并可能从根本上改变“强度-塑性困境”。然而,一个有条不紊的工程方法来开发这样的复合材料是没有实现到目前为止,由于知识差距,在关联其多层次的微观结构与整体的机械性能。该项目支持填补这一空白的研究。具有复杂微观结构的非晶-晶态金属复合材料的力学行为将从原子尺度到微观尺度进行分析。并行原子连续模型,类似于在能源部埃姆斯实验室制造的非晶-结晶金属复合材料的微观结构将被开发。在这种材料的塑性流动的多尺度模拟将进行深入了解位错和剪切转变区之间的相互作用。磁控溅射正交各向异性纳米层压板和球磨多晶聚集体的变形机制的内在差异将被确定。这项研究开辟了为所需性能构建金属复合材料微观结构的可能性。这项研究的许多方面将不仅限于金属,而且可以很容易地扩展到其他类别的材料,如仿生陶瓷,机电设备的金属玻璃基复合材料,核电站的耐腐蚀和辐射材料。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mechanical degradation due to vacancies produced by grain boundary corrosion of steel
  • DOI:
    10.1016/j.actamat.2020.08.080
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Denizhan Yavas;T. Phan;Liming Xiong;K. Hebert;A. Bastawros
  • 通讯作者:
    Denizhan Yavas;T. Phan;Liming Xiong;K. Hebert;A. Bastawros
A finite-temperature coarse-grained atomistic approach for understanding the kink-controlled dynamics of micrometer-long dislocations in high-Peierls-barrier materials
  • DOI:
    10.1557/s43579-022-00238-w
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Rigelesaiyin Ji;T. Phan;Youping Chen;D. McDowell;Liming Xiong
  • 通讯作者:
    Rigelesaiyin Ji;T. Phan;Youping Chen;D. McDowell;Liming Xiong
A combined experimental and computational analysis on how material interface mediates plastic flow in amorphous/crystalline composites
  • DOI:
    10.1557/s43578-021-00269-4
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Amir Abdelmawla;T. Phan;Liming Xiong;A. Bastawros
  • 通讯作者:
    Amir Abdelmawla;T. Phan;Liming Xiong;A. Bastawros
Quantifying the dynamics of dislocation kinks in iron and tungsten through atomistic simulations
  • DOI:
    10.1016/j.ijplas.2020.102675
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Rigelesaiyin Ji;T. Phan;Hao Chen;L. Xiong
  • 通讯作者:
    Rigelesaiyin Ji;T. Phan;Hao Chen;L. Xiong
An Atomistic-to-Microscale Computational Analysis of the Dislocation Pileup-induced Local Stresses near an Interface in Plastically Deformed Two-phase Materials
  • DOI:
    10.1016/j.actamat.2022.117663
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Yipeng Peng;Rigelesaiyin Ji;T. Phan;Wei Gao;V. Levitas;Liming Xiong
  • 通讯作者:
    Yipeng Peng;Rigelesaiyin Ji;T. Phan;Wei Gao;V. Levitas;Liming Xiong
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Liming Xiong其他文献

Induced hourglass and the equivalence between hamiltonicity and supereulerianity in claw-free graphs
诱导沙漏以及无爪图中哈密顿性与超欧拉性的等价
  • DOI:
    10.1016/j.disc.2014.05.018
  • 发表时间:
    2014-10
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Liming Xiong
  • 通讯作者:
    Liming Xiong
Even factor of a graph with a bounded number of components
具有有限数量组件的图的偶数因子
Characterizing Forbidden Pairs for the Edge-Connectivity of a Connected Graph to Be Its Minimum Degree
将连通图的边连通性的禁止对刻画为其最小度
  • DOI:
    10.3390/axioms11050219
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Junfeng Du;Ziwen Huang;Liming Xiong
  • 通讯作者:
    Liming Xiong
Maximally edge-connected graphs and Zeroth-order general Randić index for
最大边连通图和零阶一般 Randiä 指数
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Guifu Su;Liming Xiong;Xiaofeng Su
  • 通讯作者:
    Xiaofeng Su
Edge degree conditions for subpancyclicity in line graphs
  • DOI:
    10.1016/s0012-365x(97)00257-4
  • 发表时间:
    1998-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liming Xiong
  • 通讯作者:
    Liming Xiong

Liming Xiong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Liming Xiong', 18)}}的其他基金

Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
  • 批准号:
    2148678
  • 财政年份:
    2023
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
  • 批准号:
    2328533
  • 财政年份:
    2023
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Standard Grant
A Multiscale Computational Analysis of Defect-assisted Ionic Transport in Plastically Deformed Solid Oxides
塑性变形固体氧化物中缺陷辅助离子输运的多尺度计算分析
  • 批准号:
    2322675
  • 财政年份:
    2023
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Standard Grant
A Multiscale Computational Analysis of Defect-assisted Ionic Transport in Plastically Deformed Solid Oxides
塑性变形固体氧化物中缺陷辅助离子输运的多尺度计算分析
  • 批准号:
    1930093
  • 财政年份:
    2020
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Standard Grant
Interactions of Multiple Phase Transformations and Dislocations: Modeling and Simulation from Atomistic to Microscale
多相变和位错的相互作用:从原子到微观尺度的建模和仿真
  • 批准号:
    1536925
  • 财政年份:
    2015
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Standard Grant
Functional analysis of the FIERY1 Signaling Network
FIERY1 信令网络的功能分析
  • 批准号:
    0446359
  • 财政年份:
    2005
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
  • 批准号:
    2148678
  • 财政年份:
    2023
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Standard Grant
Integrated Multiscale Computational and Experimental Investigations on Fracture of Additively Manufactured Polymer Composites
增材制造聚合物复合材料断裂的综合多尺度计算和实验研究
  • 批准号:
    2309845
  • 财政年份:
    2023
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
  • 批准号:
    2328533
  • 财政年份:
    2023
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
  • 批准号:
    2148646
  • 财政年份:
    2023
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Standard Grant
CAREER: A Multiscale Computational and Experimental Framework to Elucidate the Biomechanics of Infant Growth
职业生涯:阐明婴儿生长生物力学的多尺度计算和实验框架
  • 批准号:
    2238859
  • 财政年份:
    2023
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Standard Grant
ERI: A Computational and Experimental Approach to Establishing Multiscale and Multiphasic Structure-Function Mechanisms of Muscle Stiffness
ERI:建立肌肉僵硬多尺度、多相结构功能机制的计算和实验方法
  • 批准号:
    2301653
  • 财政年份:
    2023
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Standard Grant
Designing Plk1 Inhibitors through multiscale computational and experimental methods
通过多尺度计算和实验方法设计 Plk1 抑制剂
  • 批准号:
    10580435
  • 财政年份:
    2022
  • 资助金额:
    $ 46.5万
  • 项目类别:
Collaborative Research: Fracture Mechanics of Glasses with Nanoscale Phase Separation - A Multiscale Experimental and Computational Study
合作研究:纳米级相分离玻璃的断裂力学——多尺度实验和计算研究
  • 批准号:
    1762275
  • 财政年份:
    2018
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Fracture Mechanics of Glasses with Nanoscale Phase Separation - A Multiscale Experimental and Computational Study
合作研究:纳米级相分离玻璃的断裂力学——多尺度实验和计算研究
  • 批准号:
    1762292
  • 财政年份:
    2018
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Standard Grant
Elucidation of Solid State Bonding Phenomena by Experimental and Computational Approach and Development of a Multiscale Interfacial Fracture Mechanics(Fostering Joint International Research)
通过实验和计算方法阐明固态结合现象以及开发多尺度界面断裂力学(促进国际联合研究)
  • 批准号:
    16KK0140
  • 财政年份:
    2017
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了