Pixel-level 3D nanophotonic structures for multi-modality image sensors

用于多模态图像传感器的像素级 3D 纳米光子结构

基本信息

  • 批准号:
    1807590
  • 负责人:
  • 金额:
    $ 33.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-15 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

Consumer cameras typically capture a two-dimensional (2D) image of a scene, or record a movie. Specialized optical imaging devices can also capture additional information such as the polarization of the light or even a three-dimensional (3D) image of objects in a scene. This extra information is helpful in a wide range of applications, such as in sensors for self-driving cars, for identifying different types of cells and tissues in biomedical imaging, or for keeping a richer historical record than is offered by a simple 2D image. While devices already exist that can record 3D and polarization information, they are typically much larger and bulkier than a standard cell phone camera. In this proposal, approaches to significantly reduce the size and weight of such devices will be studied. This involves not only new optical designs, but also new approaches to the processes of designing and constructing 3D optical devices out of building blocks that are much smaller than the wavelength of light. In addition to enabling particularly small devices, such small building blocks interact with light based on different physical principles than those that apply to large optics. The research will be incorporated into a course at the University of Arizona, and undergraduate students and high school teachers will also partake in the research. Native American students and their educators, who are often disadvantaged in terms of their exposure to science and engineering, will be a major demographic target.Technical: The goal of this proposal is to use three-dimensional (3D) nanophotonics to enable imaging devices with angle, wavelength, and polarization sensitivity in significantly more compact and lighter weight systems than is currently possible. In existing angle-sensitive 3D light-field imaging approaches, the diffraction limit imposes a minimum useful pixel size. Although not previously demonstrated, nanophotonics offers the potential to significantly reduce the minimum pixel size, which can in turn allow for reductions in the size of any external optics. Novel high-speed optimization-based algorithms will be used to design 3D nanophotonic structures composed of metallic and/or dielectric nanoparticle building blocks. On individual pixels, different structures will selectively receive incoming light with specific incidence angles, polarizations, and/or wavelengths. Photonic nanostructures that cover entire blocks of pixels will also be designed to sort incoming light based on incidence angle, wavelength, and polarization. The nanostructures will be fabricated using an optical tweezer-based rapid prototyping approach. Colloidal nanoparticle building blocks will be chemically functionalized to bind when brought in contact with each other using the optical tweezers. After the nanophotonic structures have been fabricated on the image sensors, they will be tested under well-controlled lighting conditions using monochromatic laser sources directed at particular angles with particular polarizations, as well as in everyday broad-band, wide-field scenes. A compact and light-weight multimodality imaging device will be created. Its performance will be compared to existing light field imagers, hyperspectral imagers, and polarimeters.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
消费类相机通常捕捉场景的二维(2D)图像,或录制电影。专门的光学成像设备还可以捕获额外的信息,如光的偏振,甚至场景中对象的三维(3D)图像。这种额外的信息有助于广泛的应用,例如自动驾驶汽车的传感器,在生物医学成像中识别不同类型的细胞和组织,或者保持比简单2D图像所提供的更丰富的历史记录。虽然已经存在可以记录3D和偏振信息的设备,但它们通常比标准的手机摄像头大得多,体积也大得多。在这项提案中,将研究显著减少此类设备的尺寸和重量的方法。这不仅涉及新的光学设计,而且还涉及设计和构建3D光学设备的过程的新方法,这些设备的构建块比光的波长小得多。除了支持特别小的设备外,这种小型构建块还基于不同于适用于大型光学设备的物理原理与光进行交互。这项研究将被纳入亚利桑那大学的一门课程,本科生和高中教师也将参与这项研究。美国原住民学生和他们的教育工作者在科学和工程方面往往处于不利地位,他们将成为主要的人口统计目标。技术:这项提议的目标是使用三维(3D)纳米光子学,使具有角度、波长和偏振敏感性的成像设备能够在比目前可能的系统更紧凑、更轻的系统中实现。在现有的角度敏感型3D光场成像方法中,衍射限制规定了有用的最小像素大小。尽管之前没有演示过,但纳米光子学提供了显著减小最小像素大小的潜力,这反过来又可以减小任何外部光学元件的大小。新的基于高速优化的算法将被用于设计由金属和/或介电纳米粒子构建块组成的三维纳米光子结构。在单个像素上,不同的结构将选择性地接收具有特定入射角度、偏振和/或波长的入射光。覆盖整个像素块的光子纳米结构也将被设计成根据入射角、波长和偏振对入射光进行分类。这些纳米结构将使用基于光学镊子的快速成型方法来制造。胶体纳米颗粒构建块将被化学功能化,以便在使用光学镊子相互接触时结合在一起。在图像传感器上制造出纳米光子结构后,它们将在受控良好的照明条件下进行测试,使用具有特定偏振的特定角度的单色激光光源,以及在日常宽带、广域场景中进行测试。将创建一种紧凑型和轻量化的多模成像设备。它的表现将与现有的光场成像仪、高光谱成像仪和偏振仪进行比较。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Accuracy of the Skin Depth Correction for Metallic Nanoparticle Polarizability
  • DOI:
    10.1021/acs.jpcc.9b01672
  • 发表时间:
    2019-05-23
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Liu, Weilin;McLeod, Euan
  • 通讯作者:
    McLeod, Euan
Accurate and fast modeling of scattering from random arrays of nanoparticles using the discrete dipole approximation and angular spectrum method
  • DOI:
    10.1364/oe.431754
  • 发表时间:
    2021-07-05
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Baker, Maryam;Liu, Weilin;McLeod, Euan
  • 通讯作者:
    McLeod, Euan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Euan McLeod其他文献

Building blocks for nanophotonic devices and metamaterials
纳米光子器件和超材料的构建块
  • DOI:
    10.1039/d4cc06236a
  • 发表时间:
    2025-01-31
  • 期刊:
  • 影响因子:
    4.200
  • 作者:
    Natalie Shultz;Euan McLeod
  • 通讯作者:
    Euan McLeod
Three-Dimensional Simulation of Particle-Induced Mode Splitting in Large Toroidal Microresonators
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
  • 作者:
    Lei Chen;Cheng Li;Yumin Liu;Judith Su;Euan McLeod
  • 通讯作者:
    Euan McLeod
Reply to Comment on “Fast and accurate electromagnetic field calculation for substrate-supported metasurfaces using the discrete dipole approximation”
回复评论“使用离散偶极近似快速准确地计算基底支撑超表面的电磁场”
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Weilin Liu;Euan McLeod
  • 通讯作者:
    Euan McLeod
Original ArticleCost-effectiveness of rivaroxaban for stroke prevention in atrial fibrillation in the Portuguese settingEstudo de custo-efectividade de rivaroxabano para prevenção de acidente vascular cerebral em doentes com fibrilhação auricular em Portugal
原创文章利伐沙班在葡萄牙预防心房颤动中风​​的成本效益Estudo de custo-efectivade de rivaroxabano para prevenção de Acidente angioce Brain em doentes com fibrilhação aurillary em Bulgaria
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Morais;C. Aguiar;Euan McLeod;Ismini Chatzitheofilou;Isabel Santos;S. Pereira
  • 通讯作者:
    S. Pereira
Automated Photonic Material and Device Assembly Using Optical Tweezers

Euan McLeod的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Euan McLeod', 18)}}的其他基金

CAREER: Design and Precision Assembly of Particulate-Based 3D Nanophotonic Devices
职业:基于颗粒的 3D 纳米光子器件的设计和精密组装
  • 批准号:
    2045220
  • 财政年份:
    2021
  • 资助金额:
    $ 33.55万
  • 项目类别:
    Continuing Grant
Superresolution lensfree microscopy
超分辨率无透镜显微镜
  • 批准号:
    2114275
  • 财政年份:
    2021
  • 资助金额:
    $ 33.55万
  • 项目类别:
    Standard Grant

相似国自然基金

外周犬尿氨酸通过脑膜免疫致海马BDNF水平降低介导术后认知功能障碍
  • 批准号:
    82371193
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
海马神经元胆固醇代谢重编程致染色质组蛋白乙酰化水平降低介导老年小鼠术后认知功能障碍
  • 批准号:
    82371192
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
粒子level set方法的改进与空间自适应波浪模型并行化研究
  • 批准号:
    52171245
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
多层次纳米叠层块体复合材料的仿生设计、制备及宽温域增韧研究
  • 批准号:
    51973054
  • 批准年份:
    2019
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
无振荡可压缩两相流切割网格方法及其在激波诱导气泡塌陷中的应用研究
  • 批准号:
    11702272
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
含有表面活性剂的液体浸润的模型和数值计算
  • 批准号:
    11601221
  • 批准年份:
    2016
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
基于高频限价指令簿的流动性度量及对市场波动影响机制研究
  • 批准号:
    71601091
  • 批准年份:
    2016
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目
基于Level Set方法的三维爆炸与冲击仿真软件开发及其应用
  • 批准号:
    11502121
  • 批准年份:
    2015
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
非球对称单气穴声致发光问题的直接数值模拟
  • 批准号:
    11501173
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
层级稀疏化的Mid-Level特征空间下高分辨率遥感影像检索方法研究
  • 批准号:
    41401376
  • 批准年份:
    2014
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

From 2D to 3D: The importance of depth for neural processing of natural stimuli
从 2D 到 3D:深度对于自然刺激神经处理的重要性
  • 批准号:
    478809
  • 财政年份:
    2023
  • 资助金额:
    $ 33.55万
  • 项目类别:
    Operating Grants
Encoding of probability distributions of 3D estimates in mind and brain
心智和大脑中 3D 估计概率分布的编码
  • 批准号:
    10463171
  • 财政年份:
    2022
  • 资助金额:
    $ 33.55万
  • 项目类别:
Collaborative Research: Imaging the 3D Viscosity Structure of the Antarctic Mantle with Existing Observations from GPS and Relative Sea Level
合作研究:利用 GPS 和相对海平面的现有观测结果对南极地幔的 3D 粘度结构进行成像
  • 批准号:
    2142592
  • 财政年份:
    2022
  • 资助金额:
    $ 33.55万
  • 项目类别:
    Standard Grant
3D Bioprinted Collagen Vascular Conduits For Use In Patients With Congenital Heart Defects
3D 生物打印胶原血管导管用于先天性心脏病患者
  • 批准号:
    10763791
  • 财政年份:
    2022
  • 资助金额:
    $ 33.55万
  • 项目类别:
MRI-Based Regional Assessment of Cerebral Metabolism Via 3D Quantitative BOLD
通过 3D 定量 BOLD 进行基于 MRI 的脑代谢区域评估
  • 批准号:
    10578782
  • 财政年份:
    2022
  • 资助金额:
    $ 33.55万
  • 项目类别:
Generating and Maintaining Multi-Level 3D City Models Using Advanced Multi-Modal Image Processing
使用高级多模态图像处理生成和维护多层次 3D 城市模型
  • 批准号:
    RGPIN-2020-04698
  • 财政年份:
    2022
  • 资助金额:
    $ 33.55万
  • 项目类别:
    Discovery Grants Program - Individual
MRI-Based Regional Assessment of Cerebral Metabolism Via 3D Quantitative BOLD
通过 3D 定量 BOLD 进行基于 MRI 的脑代谢区域评估
  • 批准号:
    10373235
  • 财政年份:
    2022
  • 资助金额:
    $ 33.55万
  • 项目类别:
Collaborative Research: Imaging the 3D Viscosity Structure of the Antarctic Mantle with Existing Observations from GPS and Relative Sea Level
合作研究:利用 GPS 和相对海平面的现有观测结果对南极地幔的 3D 粘度结构进行成像
  • 批准号:
    2142593
  • 财政年份:
    2022
  • 资助金额:
    $ 33.55万
  • 项目类别:
    Standard Grant
Encoding of probability distributions of 3D estimates in mind and brain
心智和大脑中 3D 估计概率分布的编码
  • 批准号:
    10707016
  • 财政年份:
    2022
  • 资助金额:
    $ 33.55万
  • 项目类别:
3D Bioprinted Collagen Vascular Conduits For Use In Patients With Congenital Heart Defects
3D 生物打印胶原血管导管用于先天性心脏病患者
  • 批准号:
    10537817
  • 财政年份:
    2022
  • 资助金额:
    $ 33.55万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了