Mechanisms of Hydrogenase Function

氢化酶功能机制

基本信息

  • 批准号:
    1807865
  • 负责人:
  • 金额:
    $ 40.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-06-01 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

With this award, the Chemistry of Life Processes Program in the Chemistry Division is funding Dr. Brian Dyer from Emory University to investigate how living systems efficiently store energy in chemical bonds using proton coupled electron transfer processes. The most basic electron and proton transfer reactions relevant to energy storage in chemical bonds are those involved in the reduction of protons to molecular hydrogen. Man-made catalysts are not very efficient at accelerating this process, despite its relative simplicity. In contrast, living systems have evolved a class of enzymes called the hydrogenases that catalyze the reduction of protons to molecular hydrogen at extraordinary rates and with little energy loss. The hydrogenases serve as ideal models for understanding the basic principles of efficient catalysis of multi-electron, multi-proton chemistry, which is important for a wide range of applications including generation of solar fuels. While the structures of hydrogenases are well established, their mechanisms remain poorly understood; indeed, although the chemical structures of the active site of the enzymes have been exactly reproduced in synthetic mimics, these mimics fail as catalysts, highlighting the importance of the protein architecture that surrounds the active site. The Dyer group uses unique laser-based methods to elucidate the dynamics and mechanisms of the electron and proton transfer processes and the role of the protein in controlling them. This research helps students at all levels develop highly interdisciplinary skills and a knowledge base focused on renewable energy science. Training students in renewable energy science is accomplished through the Emory Chemistry Intern Program (high school students) and the Emory SURE and SIRE programs (undergraduates) with an emphasis on underrepresented minority students recruited from the Historically Black Atlanta University Center. Professor Dyer's laboratory has a strong record of dissemination of cutting edge chemical techniques such as the laser induced T-jump methods now widely used in protein folding.Hydrogenases exemplify the challenges inherent to mechanistic studies of the highly efficient oxidoreductases. These challenges are both practical, due to the difficulty of resolving the molecular processes for enzymes with kcat 1,000 s-1, and conceptual, due to the complexity of the structures and dynamics that orchestrate the electron and proton transfer reactions. Because of the extraordinarily fast catalytic rates of these enzymes, their mechanisms have been difficult to study directly. The Dyer lab recently developed an approach that enables the study of the elementary electron and proton transfer steps during fast enzyme turnover. The approach combines a laser-induced redox potential jump with time-resolved infrared spectroscopy studies of the enzyme active site. Using this unique approach, they investigate critical mechanistic questions for the hydrogenases, including how these enzymes move electrons and protons together to avoid high barrier traps (testing the principle of electroneutrality), what are the proton pathways and how are proton transfer and electron transfer gated, and what are the mechanisms of the reaction of molecular oxygen with the active site, enzyme inactivation, and reductive reactivation. Professor Dyer creates unique research opportunities to broadly train high school, undergraduate and graduate students in this research, and to help them develop highly interdisciplinary skills and gain a knowledge base focused on renewable energy science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
凭借该奖项,化学部的生命过程化学项目正在资助埃默里大学的 Brian Dyer 博士研究生命系统如何利用质子耦合电子转移过程有效地将能量储存在化学键中。与化学键能量储存相关的最基本的电子和质子转移反应涉及质子还原成分子氢的反应。尽管人造催化剂相对简单,但在加速这一过程方面并不是很有效。相比之下,生命系统进化出了一类被称为氢化酶的酶,它能以极高的速度催化质子还原成分子氢,且几乎没有能量损失。氢化酶是理解多电子、多质子化学有效催化基本原理的理想模型,这对于包括太阳能燃料生成在内的广泛应用非常重要。虽然氢化酶的结构已经很明确,但对其机制仍知之甚少。事实上,尽管酶活性位点的化学结构已在合成模拟物中精确再现,但这些模拟物无法作为催化剂,这凸显了活性位点周围蛋白质结构的重要性。戴尔小组使用独特的基于激光的方法来阐明电子和质子转移过程的动力学和机制以及蛋白质在控制它们中的作用。 这项研究帮助各级学生培养高度跨学科的技能和专注于可再生能源科学的知识库。可再生能源科学方面的学生培训是通过埃默里化学实习生计划(高中生)以及埃默里 SURE 和 SIRE 计划(本科生)完成的,重点是从历史悠久的黑人亚特兰大大学中心招募的少数族裔学生。 Dyer 教授的实验室在传播尖端化学技术方面拥有良好的记录,例如目前广泛用于蛋白质折叠的激光诱导 T 跳跃方法。氢化酶例证了高效氧化还原酶的机理研究所固有的挑战。这些挑战既是实际挑战,因为解决 kcat 1,000 s-1 酶的分子过程很困难,也是概念挑战,因为协调电子和质子转移反应的结构和动力学的复杂性。由于这些酶的催化速率非常快,因此很难直接研究它们的机制。戴尔实验室最近开发了一种方法,可以研究酶快速周转过程中的基本电子和质子转移步骤。 该方法将激光诱导的氧化还原电位跳跃与酶活性位点的时间分辨红外光谱研究结合起来。利用这种独特的方法,他们研究了氢化酶的关键机制问题,包括这些酶如何将电子和质子一起移动以避免高势垒陷阱(测试电中性原理),质子途径是什么以及质子转移和电子转移如何门控,以及分子氧与活性位点反应、酶失活和还原再激活的机制是什么。戴尔教授创造了独特的研究机会,广泛培训高中生、本科生和研究生参与这项研究,帮助他们发展高度跨学科的技能并获得专注于可再生能源科学的知识库。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Characterizing the Surface Coverage of Protein-Gold Nanoparticle Bioconjugates.
  • DOI:
    10.1021/acs.bioconjchem.8b00366
  • 发表时间:
    2018-08-15
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Kozlowski R;Ragupathi A;Dyer RB
  • 通讯作者:
    Dyer RB
Correction to “Characterizing the Surface Coverage of Protein–Gold Nanoparticle Bioconjugates”
对“蛋白质表面覆盖特征描述”金纳米颗粒生物共轭物的修正
  • DOI:
    10.1021/acs.bioconjchem.9b00569
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Kozlowski, Rachel;Ragupathi, Ashwin;Dyer, R. Brian
  • 通讯作者:
    Dyer, R. Brian
The Laser-Induced Potential Jump: A Method for Rapid Electron Injection into Oxidoreductase Enzymes
  • DOI:
    10.1021/acs.jpcb.0c05718
  • 发表时间:
    2020-10-08
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Sanchez, Monica L. K.;Konecny, Sara E.;Dyer, R. Brian
  • 通讯作者:
    Dyer, R. Brian
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Dyer其他文献

A Hydrodynamic Fast Mixer Utilizing 3D Focusing to Follow Protein Folding Kinetics
  • DOI:
    10.1016/j.bpj.2011.11.344
  • 发表时间:
    2012-01-31
  • 期刊:
  • 影响因子:
  • 作者:
    Kelly S. Burke;Dzmitry Parul;Brian Dyer
  • 通讯作者:
    Brian Dyer
Behavioral effects and drug vulnerability in rats exposed to <em>Pfiesteria</em> toxin
  • DOI:
    10.1016/j.ntt.2005.06.008
  • 发表时间:
    2005-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Perry M. Duncan;Brian Parris;Sarah Schultz;Jermaine Jones;Andrew Gordon;Brian Dyer;Harold Marshall
  • 通讯作者:
    Harold Marshall
Impact of Protein Supplementation and Presumptive Treatment for Enteric Pathogens on Infant Growth from 6–12 Months of Age: Results of a Cluster-Randomized Controlled Trial
  • DOI:
    10.1093/cdn/nzaa053_085
  • 发表时间:
    2020-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Amanda Palmer;Hasmot Ali;Md. Iqbal Hossain;Monica Pasqualino;Kaniz Ayesha;Saijuddin Shaikh;Rezwanul Haque;Md. Tanvir Islam;Holly Schuh;Khaled Hasan;Brian Dyer;Fatema-Tuz Johura;Kelsey Alland;Kerry Schulze;Tahmeed Ahmed;Keith West Jr.;Alain Labrique
  • 通讯作者:
    Alain Labrique
Kinetics of Membrane Bending by Protein Crowding
  • DOI:
    10.1016/j.bpj.2017.11.590
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Gokul Raghunath;Brian Dyer
  • 通讯作者:
    Brian Dyer
The Effect of Eggs on Growth Among Infants 6–12 months of Age in Rural Bangladesh: A Cluster Randomized Controlled Trial
  • DOI:
    10.1093/cdn/nzaa053_090
  • 发表时间:
    2020-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Monica Pasqualino;Saijuddin Shaikh;Md. Iqbal Hossain;Md. Tanvir Islam;Hasmot Ali;Rezwanul Haque;Kaniz Ayesha;Lee Wu;Holly Schuh;Brian Dyer;Khaled Hasan;Kelsey Alland;Kerry Schulze;Fatema-Tuz Johura;Munirul Alam;Tahmeed Ahmed;Keith West Jr.;Alain Labrique;Amanda Palmer
  • 通讯作者:
    Amanda Palmer

Brian Dyer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian Dyer', 18)}}的其他基金

Mechanisms of Hydrogenase Function
氢化酶功能机制
  • 批准号:
    2108290
  • 财政年份:
    2021
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Functional Hybrid Biotic/Abiotic Materials
功能性杂化生物/非生物材料
  • 批准号:
    1808288
  • 财政年份:
    2018
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant
Functional Hybrid Biotic/Abiotic Materials
功能性杂化生物/非生物材料
  • 批准号:
    1409851
  • 财政年份:
    2014
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant

相似海外基金

Extracting energy from air: mechanism of a bacterial hydrogenase
从空气中提取能量:细菌氢化酶的机制
  • 批准号:
    DP230103080
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Discovery Projects
NSF-DFG EChem: CAS: Mechanistic Interrogation of Electrocatalytic Hydrogen Evolution by an Artificial Hydrogenase
NSF-DFG EChem:CAS:人工氢化酶电催化析氢的机械询问
  • 批准号:
    2346885
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Scaffold-based Biomimetics of Fe-Hydrogenase and Nitrogenase (FeMoco): Interrogating Dynamics, Protein Matrix Effects, and Carbide Motifs
基于支架的铁氢化酶和固氮酶 (FeMoco) 仿生学:探究动力学、蛋白质基质效应和碳化物基序
  • 批准号:
    2109175
  • 财政年份:
    2021
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
NSF-DFG EChem: CAS: Mechanistic Interrogation of Electrocatalytic Hydrogen Evolution by an Artificial Hydrogenase
NSF-DFG EChem:CAS:人工氢化酶电催化析氢的机械询问
  • 批准号:
    2140211
  • 财政年份:
    2021
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Mechanisms of Hydrogenase Function
氢化酶功能机制
  • 批准号:
    2108290
  • 财政年份:
    2021
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Is a Hydrogenase-Like Enzyme Complex Lacking a Catalytic Center the Missing Link in the Respiratory Complexes?
缺乏催化中心的类似氢化酶的酶复合物是呼吸复合物中缺失的一环吗?
  • 批准号:
    21K20578
  • 财政年份:
    2021
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Inorganic-bio hybrid photocatalytic hydrogen production using a combination of microbial metal sulfide precipitation and hydrogenase reaction
结合微生物金属硫化物沉淀和氢化酶反应的无机-生物混合光催化制氢
  • 批准号:
    20K05230
  • 财政年份:
    2020
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structural study on the confomation change of iron-sulfur cluster accompanied by oxidation in [NiFe] hydrogenase
[NiFe]氢化酶氧化过程中铁硫簇构象变化的结构研究
  • 批准号:
    20K06511
  • 财政年份:
    2020
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structural study of carbon monoxide transport during NiFe-hydrogenase maturation
NiFe-氢化酶成熟过程中一氧化碳运输的结构研究
  • 批准号:
    20K06517
  • 财政年份:
    2020
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Hydrogen-evolving and proton-pumping mechanisms of the group IV [NiFe]-hydrogenase
IV族[NiFe]-氢化酶的析氢和质子泵机制
  • 批准号:
    19K06521
  • 财政年份:
    2019
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了