Functional Hybrid Biotic/Abiotic Materials

功能性杂化生物/非生物材料

基本信息

  • 批准号:
    1808288
  • 负责人:
  • 金额:
    $ 47.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-15 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

PART 1: NON-TECHNICAL SUMMARYThe goal of this project is to develop hybrid biotic/abiotic functional materials that achieve light driven, multi-electron reduction of carbon dioxide (CO2) to formate - an anion derived from formic acid. CO2 is the inevitable oxidation product of the primary fossil fuel energy vectors of modern society and reducing it back to useful hydrocarbon products such as formate is desirable for both environmental and economic reasons. It is difficult to activate CO2 towards reduction, however, because it is a very stable molecule, both thermodynamically and kinetically. New catalysts and a method for coupling them to a renewable energy source are required to achieve this goal. Man-made materials such as metal oxide surfaces are inefficient catalysts and suffer from lack of specificity for CO2 substrate over H+ and the interfering hydrogen evolution reaction. In contrast, nature has evolved highly efficient catalysts for selective CO2 reduction without competitive H2 evolution. Formate dehydrogenases (FDH), are a class of enzymes from prokaryotes that reversibly catalyze the reduction of CO2 to formate, a precursor to methanol or methane production and a potential energy source itself. In nature, however, FDH enzymes are not naturally activated by light, but require some other input of energy. The Dyer group will develop hybrid biotic/abiotic materials that integrate a nanocrystalline semiconductor (quantum dot) with the FDH enzyme to achieve light driven CO2 reduction. Biotic/abiotic interfaces have evolved in nature to achieve functional designs that range from biofilms to photonic crystals and structural materials. Artificial hybrid abiotic/biotic materials may be rationally designed to achieve novel and emergent functions. Integrating biomolecular and abiotic structures is a powerful approach to create functional materials. The major goal of this work is to couple the biological enzyme FDH to an abiotic photosensitizer component (quantum dot) that converts solar energy into reactive electrons, to produce functional materials that can be optimized for highly efficient light driven conversion of CO2 to fuel.PART 2: TECHNICAL SUMMARYThe central goal of this grant is to develop hybrid biotic/abiotic functional materials based on a formate dehydrogenase (FDH) enzyme coupled to a nanocrystalline semiconductor (NCS) photosensitizer for light driven, multi-electron reduction of CO2 to formate. The first objective is to design, synthesize and characterize hybrid NCS:FDH materials that convert light to reactive electrons and then efficiently transfer them to the catalyst. The interfacial electron transfer (ET) will be optimized by controlling the NCS:FDH interaction using three different approaches: 1) direct attachment to the NCS surface via an N-terminal His-tag; 2) optimization of ET efficiency using a viologen derivative redox mediator and 3) a covalent "molecular wire" to the distal FeS cluster. Interfacial ET will also be optimized by wave-function engineering of the NCS structure (dot, core shell, rod, dot-in-rod structures) and the nature of the capping ligands and interfacial charge. Finally, the efficiency of light-driven CO2 reduction will be correlated to the interfacial ET efficiency and to the underlying structure of the hybrid interface. The second objective of the grant is to elucidate the mechanism of light driven CO2 reduction by hybrid NCS:FDH materials. The intrinsic photosensitivity of these hybrid materials will be exploited to optically trigger the ET and enzyme turnover and thereby study the dynamics of all of the relevant processes, including multi-exciton generation and extraction, interfacial electron transfer and enzyme turnover. These experiments will test the important hypothesis that a quantum confined NCS may act as a multi-electron photosensitizer by multi-exciton generation and extraction. This approach will also be used to elucidate the CO2 reduction mechanism by the FDH enzymes. The Dyer lab has developed a unique capability for this purpose, based on the laser induced potential jump coupled with structure-specific, time-resolved methods including ultrafast infrared and fluorescence spectroscopy. Finally, these materials will be integrated into photo-electrodes to demonstrate sustained light-driven CO2 reduction without the limitations imposed by the use of a sacrificial electron donor.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第一部分: 非技术总结该项目的目标是开发混合生物/非生物功能材料,实现光驱动,多电子还原二氧化碳(CO2)甲酸盐-甲酸衍生的阴离子。CO2是现代社会的主要化石燃料能量载体的不可避免的氧化产物,出于环境和经济原因,将其还原为有用的烃产物如甲酸盐是期望的。然而,由于CO2是一种在热力学和动力学上都非常稳定的分子,因此很难活化CO2进行还原。为了实现这一目标,需要新的催化剂和将它们与可再生能源偶联的方法。人造材料如金属氧化物表面是低效的催化剂,并且缺乏对CO2底物超过H+的特异性和干扰析氢反应。相比之下,自然界已经进化出用于选择性CO2还原而没有竞争性H2释放的高效催化剂。甲酸脱氢酶(FDH)是一类来自原核生物的酶,其可逆地催化CO2还原为甲酸盐,甲酸盐是甲醇或甲烷生产的前体,并且其本身是潜在的能源。然而,在自然界中,FDH酶并不自然地被光激活,而是需要一些其他的能量输入。Dyer团队将开发混合生物/非生物材料,将纳米晶体半导体(量子点)与FDH酶整合在一起,以实现光驱动的CO2减排。生物/非生物界面已经在自然界中进化,以实现从生物膜到光子晶体和结构材料的功能设计。人工杂交非生物/生物材料可以被合理地设计以实现新的和紧急的功能。 整合生物分子和非生物结构是创造功能材料的有力途径。本工作的主要目标是将生物酶FDH偶联到非生物光敏剂组分上(量子点)将太阳能转化为活性电子,以生产功能材料,这些材料可以优化用于高效的光驱动CO2转化为燃料。技术概述该基金的中心目标是开发基于甲酸脱氢酶(FDH)的生物/非生物混合功能材料酶偶联到纳米晶体半导体(NCS)光敏剂,用于光驱动的多电子还原CO2为甲酸盐。第一个目标是设计,合成和表征混合NCS:FDH材料,将光转化为活性电子,然后有效地将它们转移到催化剂。界面电子转移(ET)将通过使用三种不同的方法控制NCS:FDH相互作用来优化:1)经由N-末端His-标签直接附接至NCS表面; 2)使用紫精衍生物氧化还原介体优化ET效率和3)共价“分子线”至远端FeS簇。界面ET也将通过NCS结构(点、核壳、棒、棒中点结构)的波函数工程以及封端配体和界面电荷的性质来优化。最后,光驱动的CO2还原的效率将与界面ET效率和混合界面的底层结构相关。该基金的第二个目标是阐明混合NCS:FDH材料光驱动CO2减排的机制。这些混合材料的固有光敏性将被利用来光学触发ET和酶周转,从而研究所有相关过程的动力学,包括多激子产生和提取,界面电子转移和酶周转。这些实验将验证一个重要的假设,即量子限制NCS可以作为一个多电子光敏剂的多激子产生和提取。该方法也将用于阐明FDH酶的CO2还原机制。Dyer实验室为此开发了一种独特的能力,该能力基于激光诱导电位跳跃,结合结构特异性、时间分辨方法,包括超快红外和荧光光谱。最后,这些材料将被集成到光电极中,以展示持续的光驱动二氧化碳减排,而不受使用牺牲电子供体的限制。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Characterizing the Surface Coverage of Protein-Gold Nanoparticle Bioconjugates.
  • DOI:
    10.1021/acs.bioconjchem.8b00366
  • 发表时间:
    2018-08-15
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Kozlowski R;Ragupathi A;Dyer RB
  • 通讯作者:
    Dyer RB
Correction to “Characterizing the Surface Coverage of Protein–Gold Nanoparticle Bioconjugates”
对“蛋白质表面覆盖特征描述”金纳米颗粒生物共轭物的修正
  • DOI:
    10.1021/acs.bioconjchem.9b00569
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Kozlowski, Rachel;Ragupathi, Ashwin;Dyer, R. Brian
  • 通讯作者:
    Dyer, R. Brian
The Laser-Induced Potential Jump: A Method for Rapid Electron Injection into Oxidoreductase Enzymes
  • DOI:
    10.1021/acs.jpcb.0c05718
  • 发表时间:
    2020-10-08
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Sanchez, Monica L. K.;Konecny, Sara E.;Dyer, R. Brian
  • 通讯作者:
    Dyer, R. Brian
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Dyer其他文献

A Hydrodynamic Fast Mixer Utilizing 3D Focusing to Follow Protein Folding Kinetics
  • DOI:
    10.1016/j.bpj.2011.11.344
  • 发表时间:
    2012-01-31
  • 期刊:
  • 影响因子:
  • 作者:
    Kelly S. Burke;Dzmitry Parul;Brian Dyer
  • 通讯作者:
    Brian Dyer
Behavioral effects and drug vulnerability in rats exposed to <em>Pfiesteria</em> toxin
  • DOI:
    10.1016/j.ntt.2005.06.008
  • 发表时间:
    2005-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Perry M. Duncan;Brian Parris;Sarah Schultz;Jermaine Jones;Andrew Gordon;Brian Dyer;Harold Marshall
  • 通讯作者:
    Harold Marshall
Impact of Protein Supplementation and Presumptive Treatment for Enteric Pathogens on Infant Growth from 6–12 Months of Age: Results of a Cluster-Randomized Controlled Trial
  • DOI:
    10.1093/cdn/nzaa053_085
  • 发表时间:
    2020-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Amanda Palmer;Hasmot Ali;Md. Iqbal Hossain;Monica Pasqualino;Kaniz Ayesha;Saijuddin Shaikh;Rezwanul Haque;Md. Tanvir Islam;Holly Schuh;Khaled Hasan;Brian Dyer;Fatema-Tuz Johura;Kelsey Alland;Kerry Schulze;Tahmeed Ahmed;Keith West Jr.;Alain Labrique
  • 通讯作者:
    Alain Labrique
Kinetics of Membrane Bending by Protein Crowding
  • DOI:
    10.1016/j.bpj.2017.11.590
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Gokul Raghunath;Brian Dyer
  • 通讯作者:
    Brian Dyer
The Effect of Eggs on Growth Among Infants 6–12 months of Age in Rural Bangladesh: A Cluster Randomized Controlled Trial
  • DOI:
    10.1093/cdn/nzaa053_090
  • 发表时间:
    2020-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Monica Pasqualino;Saijuddin Shaikh;Md. Iqbal Hossain;Md. Tanvir Islam;Hasmot Ali;Rezwanul Haque;Kaniz Ayesha;Lee Wu;Holly Schuh;Brian Dyer;Khaled Hasan;Kelsey Alland;Kerry Schulze;Fatema-Tuz Johura;Munirul Alam;Tahmeed Ahmed;Keith West Jr.;Alain Labrique;Amanda Palmer
  • 通讯作者:
    Amanda Palmer

Brian Dyer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian Dyer', 18)}}的其他基金

Mechanisms of Hydrogenase Function
氢化酶功能机制
  • 批准号:
    2108290
  • 财政年份:
    2021
  • 资助金额:
    $ 47.81万
  • 项目类别:
    Standard Grant
Mechanisms of Hydrogenase Function
氢化酶功能机制
  • 批准号:
    1807865
  • 财政年份:
    2018
  • 资助金额:
    $ 47.81万
  • 项目类别:
    Standard Grant
Functional Hybrid Biotic/Abiotic Materials
功能性杂化生物/非生物材料
  • 批准号:
    1409851
  • 财政年份:
    2014
  • 资助金额:
    $ 47.81万
  • 项目类别:
    Continuing Grant

相似国自然基金

一种经心房覆膜血管支架植入 Hybrid Fontan 手术的 临床新技术研究
  • 批准号:
    20Y11910600
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于深度压缩技术的Hybrid像素探测器读出系统原型机研制
  • 批准号:
    11875146
  • 批准年份:
    2018
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
模拟胰岛“hybrid”修饰抗原诱导tolDC免疫保护1型糖尿病β细胞研究
  • 批准号:
    81770777
  • 批准年份:
    2017
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
PSMA靶向Hybrid-SiO2基纳米诊疗剂用于前列腺癌HIFU治疗及增效机制研究
  • 批准号:
    81601499
  • 批准年份:
    2016
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目
穿戴式步行辅助的Hybrid控制体系及其据需辅助效应研究
  • 批准号:
    51505048
  • 批准年份:
    2015
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
基于Hybrid数据的复杂系统辨识与优化设计及在低渗透油井中的应用
  • 批准号:
    61572084
  • 批准年份:
    2015
  • 资助金额:
    67.0 万元
  • 项目类别:
    面上项目
波-流-植被耦合环境下射流Hybrid RANS/LES数值模拟研究
  • 批准号:
    51509075
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
Hybrid加速结构的理论及预制研究
  • 批准号:
    11475201
  • 批准年份:
    2014
  • 资助金额:
    100.0 万元
  • 项目类别:
    面上项目
基于BGM法结合Hybrid同化开展暴雨短期集合预报方法研究
  • 批准号:
    41205073
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于Hybrid方法的大型冗余驱动机构控制策略研究
  • 批准号:
    51205392
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Nanoengineered hybrid coatings that control inflammation to artificial bone
控制人造骨炎症的纳米工程混合涂层
  • 批准号:
    DP240103271
  • 财政年份:
    2024
  • 资助金额:
    $ 47.81万
  • 项目类别:
    Discovery Projects
Hybrid Electrochemically-paired Light Irradiated Organic Synthesis (Acronym: HELIOS)
混合电化学配对光照射有机合成(缩写:HELIOS)
  • 批准号:
    EP/Y037413/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.81万
  • 项目类别:
    Research Grant
Hybrid AI and multiscale physical modelling for optimal urban decarbonisation combating climate change
混合人工智能和多尺度物理建模,实现应对气候变化的最佳城市脱碳
  • 批准号:
    EP/X029093/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.81万
  • 项目类别:
    Fellowship
CAREER: Hybrid Surface Coating Toward Corrosion-Controlled Magnesium-Based Implants
职业:针对腐蚀控制镁基植入物的混合表面涂层
  • 批准号:
    2339911
  • 财政年份:
    2024
  • 资助金额:
    $ 47.81万
  • 项目类别:
    Continuing Grant
CAREER: High-Resolution Hybrid Printing of Wearable Heaters with Shape-Changeable Structures
职业:具有可变形结构的可穿戴加热器的高分辨率混合打印
  • 批准号:
    2340414
  • 财政年份:
    2024
  • 资助金额:
    $ 47.81万
  • 项目类别:
    Standard Grant
Development of hybrid permanent combined-function magnet for sustainable accelerators
开发用于可持续加速器的混合永磁组合功能磁体
  • 批准号:
    24K21037
  • 财政年份:
    2024
  • 资助金额:
    $ 47.81万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Multiscale Reduced Order Modeling and Design to Elucidate the Microstructure-Property-Performance Relationship of Hybrid Composite Materials
职业:通过多尺度降阶建模和设计来阐明混合复合材料的微观结构-性能-性能关系
  • 批准号:
    2341000
  • 财政年份:
    2024
  • 资助金额:
    $ 47.81万
  • 项目类别:
    Standard Grant
CAS: Photocatalysis on Hybrid Plasmonic Materials
CAS:混合等离子体材料的光催化
  • 批准号:
    2349887
  • 财政年份:
    2024
  • 资助金额:
    $ 47.81万
  • 项目类别:
    Standard Grant
Deciphering and Directing Hierarchical Self-Assembly in Hybrid Chiral Films
破译和指导混合手性薄膜中的分层自组装
  • 批准号:
    2344586
  • 财政年份:
    2024
  • 资助金额:
    $ 47.81万
  • 项目类别:
    Standard Grant
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
  • 批准号:
    2334039
  • 财政年份:
    2024
  • 资助金额:
    $ 47.81万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了