Building a Platform of Impact-Energy Absorbing Materials: How Molecular Manipulations Translate into Macroscopic Properties
构建冲击能量吸收材料平台:分子操纵如何转化为宏观特性
基本信息
- 批准号:1808204
- 负责人:
- 金额:$ 33.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARY:A unique property of polymers is their ability to absorb mechanical energy during impact events by transferring that energy into molecular motions of the individual polymer chains. This project is focused on studying the fundamental materials properties for a platform of energy-absorbing polymers and developing a toolbox to introduce molecular mechanisms to increase toughness, energy dissipation, and the potential for nanoscale self-healing that will increase the lifespan of the material. This platform is based on polymer network materials called "thiol-ene network thermosets". They can be made through chemistry that offers fast reaction times and highly homogeneous networks, like a chain-link fence, resulting in high energy absorption capacity. Previous work in the Savin group has demonstrated the ability to make molecular-level changes in the network and have this translate into macroscopic changes in the physical properties of the materials. These changes can be done in a modular way using facile chemistry. The resulting materials have applications in sound damping, shatterproof coatings, personal protective equipment (e.g., mouthguards and multi-impact foams), and ballistics protection. Advances in scientific discovery will be incorporated into the education and training of students, integrating a broad range of disciplines including chemistry, physics, biochemistry, and polymer science. Group members will gain a comprehensive understanding of polymers in many areas of synthesis, characterization, morphology, scattering and rheology, from both a fundamental and an applied standpoint. This multidisciplinary approach is beneficial not only for education, but also to produce well-rounded graduates who are attractive to a variety of employers in both academic and industrial settings. Diversity and involvement in K-5 elementary science outreach are also strongly emphasized. TECHNICAL SUMMARY:The objective of this research is to study the fundamental materials properties for a platform of energy absorbing polymers based on thiol-ene network (TEN) thermosets. Previous research on TENs has shown the ability to make molecular-level manipulations through chemistry and have this translate to changes in macroscopic performance and function. The goal of this research is to exploit advances in TEN modification to synthesize new monomers where we introduce mechanisms to increase toughness, as well as the potential for self-healing that will ultimately increase the life span of the material. This will be done for both slab (Aim 1) and foam (Aim 2) materials. In the proposed research, we will introduce these molecular-level mechanisms for energy dissipation and toughness through dynamic-covalent sacrificial, mechanochemical linkages, and incorporation of photo-responsive, liquid crystalline azobenzene substituents. Building a toolbox of network modifications will allow us to discover materials that have the potential to transform the field of energy-absorbing materials by expanding functionality. The modified TEN materials platform that will be developed in this proposal is completely modular and can be applied to applications such as personal protective equipment, curable coatings, ballistics protection, dental restoratives, and polymer composite materials. Successful completion of the proposed research will yield a platform of materials with improved impact-energy absorption properties, as well as an understanding of how molecular design and manipulation translates into dynamics and macroscopic function.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结:聚合物的一个独特特性是它们在撞击事件中吸收机械能的能力,这种能力是通过将能量转化为单个聚合物链的分子运动来实现的。该项目的重点是研究吸能聚合物平台的基本材料特性,并开发一个工具箱来引入分子机制,以增加韧性、能量耗散和纳米级自愈的潜力,从而延长材料的寿命。该平台基于称为“巯基网络热固性”的聚合物网络材料。它们可以通过提供快速反应时间和高度均匀网络的化学方法制造,就像链式围栏一样,从而产生高能量吸收能力。Savin小组之前的工作已经证明了在网络中进行分子水平变化的能力,并将其转化为材料物理性质的宏观变化。这些变化可以用简单的化学方法以模块化的方式完成。由此产生的材料可用于减声、防震涂层、个人防护设备(例如护齿器和多重冲击泡沫)和弹道防护。科学发现的进步将被纳入学生的教育和培训,整合广泛的学科,包括化学、物理、生物化学和聚合物科学。小组成员将从基础和应用的角度全面了解聚合物的合成,表征,形态,散射和流变性等许多领域。这种多学科的方法不仅有利于教育,而且有利于培养全面发展的毕业生,这些毕业生在学术和工业领域对各种雇主都有吸引力。在K-5小学科学推广的多样性和参与也被强烈强调。技术概述:本研究的目的是研究基于巯基网络(TEN)热固性吸能聚合物平台的基本材料特性。先前对TENs的研究表明,它能够通过化学手段进行分子水平的操纵,并将其转化为宏观性能和功能的变化。这项研究的目标是利用TEN改性的进展来合成新的单体,我们引入了增加韧性的机制,以及自我修复的潜力,最终将增加材料的使用寿命。这将用于板材(目标1)和泡沫(目标2)材料。在我们提出的研究中,我们将通过动态共价牺牲、机械化学键和加入光响应的液晶偶氮苯取代基来介绍这些分子水平的能量耗散和韧性机制。建立一个网络修改工具箱将使我们能够发现有潜力通过扩展功能来改变吸能材料领域的材料。本提案中开发的改良TEN材料平台是完全模块化的,可应用于个人防护设备、固化涂层、弹道防护、牙科修复材料和聚合物复合材料等应用。这项研究的成功完成将产生一个具有改进的冲击能量吸收特性的材料平台,以及对分子设计和操纵如何转化为动力学和宏观功能的理解。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brent Sumerlin其他文献
Polymer Science: The Next Generation
高分子科学:下一代
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:4.6
- 作者:
Jean-Francois Lutz;Shiyong Liu;Brent Sumerlin - 通讯作者:
Brent Sumerlin
Brent Sumerlin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brent Sumerlin', 18)}}的其他基金
Circularizing Squarate-Based Materials: Novel Dynamic Networks
圆形方形材料:新型动态网络
- 批准号:
2404144 - 财政年份:2024
- 资助金额:
$ 33.9万 - 项目类别:
Standard Grant
Macromolecular Metamorphosis: Transformable Polymeric Materials
高分子变形:可变形高分子材料
- 批准号:
1606410 - 财政年份:2016
- 资助金额:
$ 33.9万 - 项目类别:
Standard Grant
Proposal for NSF support of the ACS Symposium "Controlled/Living Radical Polymerization" to be held in San Francisco, CA, August 10-14, 2014
NSF 支持 ACS 研讨会“受控/活性自由基聚合”的提案,将于 2014 年 8 月 10 日至 14 日在加利福尼亚州旧金山举行
- 批准号:
1419548 - 财政年份:2014
- 资助金额:
$ 33.9万 - 项目类别:
Standard Grant
Responsive and Healable Materials Constructed via Dynamic-Covalent Bonds
通过动态共价键构建的响应和可修复材料
- 批准号:
1410223 - 财政年份:2014
- 资助金额:
$ 33.9万 - 项目类别:
Continuing Grant
CAREER: Stimuli-Responsive Dynamic Macromolecular Assemblies
职业:刺激响应动态大分子组装
- 批准号:
1265388 - 财政年份:2012
- 资助金额:
$ 33.9万 - 项目类别:
Continuing Grant
CAREER: Stimuli-Responsive Dynamic Macromolecular Assemblies
职业:刺激响应动态大分子组装
- 批准号:
0846792 - 财政年份:2009
- 资助金额:
$ 33.9万 - 项目类别:
Continuing Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
相似海外基金
Identification and impact of polymers on stem cell products in an automated biomanufacturing platform
自动化生物制造平台中聚合物对干细胞产品的识别和影响
- 批准号:
10089013 - 财政年份:2024
- 资助金额:
$ 33.9万 - 项目类别:
Collaborative R&D
MetabolGut: a rapid assay platform to evaluate the impact drugs on lipid-handlingpathways and chylomicron-associated drug distribution using stem cell-drivenhuman absorptive enterocytes.
MetabolGut:一个快速检测平台,使用干细胞驱动的人体吸收性肠上皮细胞来评估药物对脂质处理途径和乳糜微粒相关药物分布的影响。
- 批准号:
10766493 - 财政年份:2023
- 资助金额:
$ 33.9万 - 项目类别:
Reducing the environmental impact of Metered Dose Inhalers with aflo, the automated inhaler technique platform
利用自动吸入器技术平台 aflo 减少定量吸入器对环境的影响
- 批准号:
10055368 - 财政年份:2023
- 资助金额:
$ 33.9万 - 项目类别:
Grant for R&D
SBIR Phase I: An impact analytics platform combining energy system optimization and life cycle assessment
SBIR 第一阶段:结合能源系统优化和生命周期评估的影响分析平台
- 批准号:
2230578 - 财政年份:2023
- 资助金额:
$ 33.9万 - 项目类别:
Standard Grant
FOYC+ImPACT US: A digital platform for critical sexual health risk reduction curriculum customization and hybrid/remote delivery of Focus on Youth to underserved Caribbean youth in the U.S.
FOYC ImPACT US:一个数字平台,用于关键的性健康风险降低课程定制以及混合/远程向美国服务不足的加勒比青年提供“关注青年”课程。
- 批准号:
10699553 - 财政年份:2023
- 资助金额:
$ 33.9万 - 项目类别:
Evaluating the impact of a SIMPlified LaYered consent process versus a conventional informed consent form on recruitment of potential participants to a large platform clinical trial: a pragmatic nested randomized controlled trial (SIMPLY-SNAP Trial) - Ful
评估简化分层同意流程与传统知情同意书对招募潜在参与者参加大型平台临床试验的影响:一项实用的嵌套随机对照试验(SIMPLY-SNAP 试验)- Ful
- 批准号:
478773 - 财政年份:2023
- 资助金额:
$ 33.9万 - 项目类别:
Operating Grants
Environmental Impact Tracking Platform Development
环境影响追踪平台开发
- 批准号:
10043045 - 财政年份:2022
- 资助金额:
$ 33.9万 - 项目类别:
Grant for R&D
A Digital Nudge: Assessing the Impact of an Immutable Records Data Management Platform on Student Researcher Ethics
数字推动:评估不可变记录数据管理平台对学生研究员道德的影响
- 批准号:
2124866 - 财政年份:2022
- 资助金额:
$ 33.9万 - 项目类别:
Standard Grant
A digital platform for carbon impact assessment of renewable power
可再生能源碳影响评估的数字平台
- 批准号:
600559 - 财政年份:2022
- 资助金额:
$ 33.9万 - 项目类别:
EU-Funded
Mild Trauma Impact Sensor (MTIS): development of a new, highly-accurate sensor platform to measure and track repetitive, subconcussive head injuries in adolescents and amateur sports teams
轻度创伤撞击传感器 (MTIS):开发一种新型高精度传感器平台,用于测量和跟踪青少年和业余运动队重复性亚脑震荡性头部损伤
- 批准号:
10029269 - 财政年份:2022
- 资助金额:
$ 33.9万 - 项目类别:
Collaborative R&D