Association Schemes and Configurations in Real and Complex Space

真实和复杂空间中的关联方案和配置

基本信息

  • 批准号:
    1808376
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

This project investigates combinatorial objects fundamental to various areas of communications, information theory, networks, and numerous topics in pure mathematics. The team, consisting of the Principal Investigator (PI) and a PhD student will study association schemes and configurations in real and complex space. The project is motivated by applications in the theory of error-correcting codes, cryptography, quantum information theory, knot theory, extremal networks, finite geometry and spherical and projective codes. Association schemes and related tools play a fundamental role in these and other areas, for example guiding us to the best known efficiency bounds for binary error-correcting block codes used in most digital communications devices. As digital technologies grow in scale and complexity, we see increasing need for algebraic tools of this sort that extract important structural information efficiently from data. The project's broader impacts include training of highly qualified personnel and outreach to students and teachers in local schools.Progress on association schemes over the past 50 years has been phenomenal, and the variety of new applications that the theory handles has increased with each passing decade. Yet some fundamental problems, regarding cometric association schemes for example, remain unresolved with few new ideas emerging until recently. This project explores powerful mathematical tools, ranging from algebraic geometry to algebraic topology, to forge a stronger and more versatile theory of association schemes that will be equipped to attack existing open questions - both theoretical and applied - as well as future challenges that are likely to be framed in this general combinatorial language. Specific problems to be attacked include: efficient description of the ideal of polynomials vanishing on the set of columns of the first primitive idempotent of a cometric scheme; constructions (via finite geometry and design theory) and bounds for systems of lines with few angles; bounds on efficiency parameters of association schemes and codes; determining the structure of additive completely regular error-correcting codes. The mathematical tools to be employed have mainly been developed by the algebraic combinatorics community, including linear-algebraic and ring-theoretic techniques, as well as zero-dimensional ideals in polynomial rings and discrete homotopy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目研究了通信、信息理论、网络和众多纯数学主题的各个领域的基本组合对象。该团队由首席研究员(PI)和一名博士生组成,将研究真实和复杂空间中的关联方案和配置。该项目的动机是在纠错码理论、密码学、量子信息理论、结理论、极值网络、有限几何以及球面和射影码方面的应用。关联方案和相关工具在这些领域和其他领域发挥着重要作用,例如,指导我们了解大多数数字通信设备中使用的二进制纠错分组码的最佳效率界限。随着数字技术在规模和复杂性上的增长,我们看到对这种代数工具的需求越来越大,这种工具可以有效地从数据中提取重要的结构信息。该项目更广泛的影响包括培训高素质人才和向当地学校的学生和教师伸出援手。在过去的50年里,联想计划的进展是惊人的,并且该理论处理的各种新应用随着每一个十年的过去而增加。然而,一些基本问题,例如经济关联方案,仍未得到解决,直到最近才出现了一些新想法。该项目探索了强大的数学工具,从代数几何到代数拓扑,以建立一个更强大和更通用的关联方案理论,该理论将装备来解决现有的开放性问题-理论和应用-以及可能在这种通用组合语言框架下的未来挑战。具体的问题包括:多项式的理想消失在一个几何格式的第一原始幂等的列集合上的有效描述;构造(通过有限几何和设计理论)和边界的线与少数角度的系统;关联方案和规范的效率参数边界确定了加性全正则纠错码的结构。所使用的数学工具主要是由代数组合学界开发的,包括线性代数和环理论技术,以及多项式环中的零维理想和离散同伦。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scaffolds: A graph-theoretic tool for tensor computations related to Bose-Mesner algebras
Some bounds arising from a polynomial ideal associated to any $t$-design
  • DOI:
    10.13069/jacodesmath.729446
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    W. Martin;Douglas R Stinson
  • 通讯作者:
    W. Martin;Douglas R Stinson
Triple intersection numbers for the Paley graphs
Paley 图的三重交集数
  • DOI:
    10.1016/j.ffa.2022.102010
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Brouwer, Andries E.;Martin, William J.
  • 通讯作者:
    Martin, William J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Martin其他文献

Editorial: Ecology, Metabolism and Evolution of Archaea-Perspectives From Proceedings of the International Workshop on Geo-Omics of Archaea
  • DOI:
    10.3389/fmicb.2021.827229
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Brian P. Hedlund;Chuanlun Zhang;Fengping Wang;Christian Rinke;William Martin
  • 通讯作者:
    William Martin
Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes
内共生基因转移:细胞器基因组塑造真核染色体
  • DOI:
    10.1038/nrg1271
  • 发表时间:
    2004-02-01
  • 期刊:
  • 影响因子:
    52.000
  • 作者:
    Jeremy N. Timmis;Michael A. Ayliffe;Chun Y. Huang;William Martin
  • 通讯作者:
    William Martin
Hydrothermal vents and the origin of life
热液喷口与生命的起源
  • DOI:
    10.1038/nrmicro1991
  • 发表时间:
    2008-09-29
  • 期刊:
  • 影响因子:
    103.300
  • 作者:
    William Martin;John Baross;Deborah Kelley;Michael J. Russell
  • 通讯作者:
    Michael J. Russell
Correction to: Immunoinformatic Risk Assessment of Host Cell Proteins During Process Development for Biologic Therapeutics
  • DOI:
    10.1208/s12248-023-00868-5
  • 发表时间:
    2023-12-19
  • 期刊:
  • 影响因子:
    3.700
  • 作者:
    Kirk Haltaufderhyde;Brian J. Roberts;Sundos Khan;Frances Terry;Christine M. Boyle;Mitchell McAllister;William Martin;Amy Rosenberg;Anne S. De Groot
  • 通讯作者:
    Anne S. De Groot
Immunoinformatic Risk Assessment of Host Cell Proteins During Process Development for Biologic Therapeutics
  • DOI:
    10.1208/s12248-023-00852-z
  • 发表时间:
    2023-09-11
  • 期刊:
  • 影响因子:
    3.700
  • 作者:
    Kirk Haltaufderhyde;Brian J. Roberts;Sundos Khan;Frances Terry;Christine M. Boyle;Mitchell McAllister;William Martin;Amy Rosenberg;Anne S. De Groot
  • 通讯作者:
    Anne S. De Groot

William Martin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Martin', 18)}}的其他基金

EAPSI: Providing Smart User Feedback Based on Bayesian Models
EAPSI:基于贝叶斯模型提供智能用户反馈
  • 批准号:
    1713881
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Fellowship Award
Systems of Lines: Applications of Algebraic Combinatorics
线系:代数组合学的应用
  • 批准号:
    1541272
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research - Linear Algebra in New Environments (LINE)
合作研究——新环境中的线性代数(LINE)
  • 批准号:
    0837050
  • 财政年份:
    2009
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
The Solubility of Biogenic Calcite
生物方解石的溶解度
  • 批准号:
    0824646
  • 财政年份:
    2008
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Radiocarbon as a Tool for Studying Organic Matter Diagenesis in Rapidly Accumulating, Continental Margin Sediments: Linking Bulk Organic Matter and Molecular Level Studies
放射性碳作为研究快速积累的大陆边缘沉积物中有机物成岩作用的工具:将大量有机物和分子水平研究联系起来
  • 批准号:
    0526389
  • 财政年份:
    2005
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
High-Resolution 230Th Profiles in Carbonate Sediments: A Signal from Steady-State Dissolution?
碳酸盐沉积物中的高分辨率 230Th 剖面:来自稳态溶解的信号?
  • 批准号:
    0099016
  • 财政年份:
    2001
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
The Cycling of Organic Carbon and Calcium Carbonate in Marine Sediments: Determination of Parameters for Use in Global Models
海洋沉积物中有机碳和碳酸钙的循环:确定全球模型中使用的参数
  • 批准号:
    9876533
  • 财政年份:
    1999
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
The NDSU Collaborative for Mathematics and Science Teacher Preparation (NDSU - CoMSTeP)
NDSU 数学和科学教师培训合作组织 (NDSU - CoMSTeP)
  • 批准号:
    9876681
  • 财政年份:
    1999
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Diagenesis and CaCO3 Dissolution in Sediments of the EasternEquatorial Atlantic Ocean and Continental Margin Off Cape Hatteras
赤道东部大西洋和哈特拉斯角大陆边缘沉积物中的成岩作用和 CaCO3 溶解
  • 批准号:
    9617430
  • 财政年份:
    1998
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Pore Water Estimates of the Radiocarbon Age of Calcite Dissolving at the Sea Floor
海底方解石溶解的放射性碳年龄的孔隙水估计
  • 批准号:
    9810962
  • 财政年份:
    1998
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309547
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Building Predictive Coarse-Graining Schemes for Complex Microbial Ecosystems
为复杂的微生物生态系统构建预测粗粒度方案
  • 批准号:
    2310746
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Iwasawa theory of class group schemes in characteristic p
特征p中的类群方案岩泽理论
  • 批准号:
    2302072
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Mathematical analyses on one-bit secret sharing schemes and their extensions
一位秘密共享方案及其扩展的数学分析
  • 批准号:
    23K10979
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on Cryptographic Schemes with Probabilistically Decryptable Encryption Scheme
概率可解密加密方案的密码方案研究
  • 批准号:
    23K19952
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Construction of Post-quantum Signature Schemes based on Lattices
基于格的后量子签名方案构建
  • 批准号:
    EP/X036669/1
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
The influence of fungal networks on the success of tree-planting schemes
真菌网络对植树计划成功的影响
  • 批准号:
    2898803
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Studentship
Fundamentals and applications of tropical schemes
热带计划的基础和应用
  • 批准号:
    EP/X02752X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Fellowship
Advanced inertial confinement fusion schemes
先进的惯性约束聚变方案
  • 批准号:
    2887053
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Studentship
Collaborative Research: Effective Numerical Schemes for Fundamental Problems Related to Incompressible Fluids
合作研究:与不可压缩流体相关的基本问题的有效数值方案
  • 批准号:
    2309748
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了