Manipulating and Exploiting Lattice Strain as a Novel Platform to Tune the Surface Work Function of Metallic Nanocatalysts
操纵和利用晶格应变作为调整金属纳米催化剂表面功函数的新平台
基本信息
- 批准号:1808383
- 负责人:
- 金额:$ 50.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nontechnical description:Lattice strain, arising from crystal imperfections, is an important phenomenon of material modification and can bring many novel advantages to catalysts as it changes the surface adsorption behavior through a variation of the catalyst surface work function. For noble metal-based ultra-small particles, that is, nanocrystals, manipulation of the lattice strain could be one of the significant pathways to improve their catalytic performance on chemical and electrochemical reactions. This project focuses on the study of the lattice strain existing in bimetallic nanocrystals that are produced via a gas-phase etching approach. One of the proposed materials is a Pt-Ni nanocrystal system from which the Ni-component is extracted by combining with carbon monoxide to form gaseous nickel carbonyl at a mild temperature, thus creating a strain in the nanocrystal. Through this lattice strain concept, the research aims to seek some fundamental understandings of the lattice strain formation and solutions of catalytic improvement in some emergent electrochemical reactions in energy conversion and environmental protection, such as reactions in fuel-cell, water-splitting, and carbon-neutral conversion. Specifically, this study will answer the following questions: How can the lattice strain be generated and controlled during a de-alloying process? How can the lattice strain be explicitly identified? And how can the lattice strain be used experimentally to promote the reactivity? This project will have profound impacts on various ongoing outreach and education programs through multidisciplinary research platform. The insights and knowledge gained from this study will stimulate the NSF-supported S-STEM program, Binghamton University's "Transdisciplinary Area of Excellence" campaign, and novel curriculum development. This project will also promote lab-based training activities of graduate and undergraduate students through summer research programs by forging links among diverse research fields. In addition, the success of this study will bring multifold benefits to the general public through scientific discoveries and resultant technologies.Technical description:For noble metal nanocrystals, lattice strain can generally cause a lattice contraction featuring a down-shift d-band center, which weakens the adsorption strength of species on the catalyst surfaces. The goal of this project is to significantly advance the development of catalytic sites with lattice strain that exists in several types of shape-controlled state-of-the-art nanocrystals as the model systems. The lattice-stressed systems can be created from Ni-containing bimetallic precursors by taking advantage of the Mond process as an unprecedented etching protocol. The related de-alloying mechanism will be understood in depth through a systematical structure-analysis of the highly porous nanoframes generated from a gaseous de-alloying process. With an evaluation of their electrocatalytic performance using several typical reactions including but not limited to ORR, HER, and eCO2RR, a comparison of the identified performances with and without the strain stress will be implemented, and a reactivity-strain correlation that provides guidelines for tuning electrocatalytic activity will be uncovered. The proposed Pt-Ni precursor will also be extended to other bimetallic systems, such as Cu-Ni, Ag-Ni, Pd-Ni, and Fe-containing bimetallic system. This project will have profound impacts on the exploitation of mechanistic origin of the catalytic activity as well as novel insights of the electrocatalytic performance improvement.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:晶格应变,由晶体缺陷引起,是材料改性的一个重要现象,可以给催化剂带来许多新的优点,因为它通过改变催化剂表面功函数改变表面吸附行为。对于贵金属基超小颗粒,即纳米晶体,晶格应变的操纵可能是改善其化学和电化学反应催化性能的重要途径之一。本计画主要研究以气相蚀刻法制造的奈米微晶中存在的晶格应变。所提出的材料之一是Pt-Ni氧化物系统,通过在温和温度下与一氧化碳结合以形成气态羰基镍,从而在氧化物中产生应变,从该系统中提取Ni组分。通过晶格应变的概念,对能源转换和环境保护中的一些新兴电化学反应,如燃料电池反应、水裂解反应、碳中性转化反应等,寻求晶格应变形成的基本认识和催化改进的解决方案。具体来说,这项研究将回答以下问题:如何可以产生晶格应变和控制在去合金化过程中?如何明确地确定晶格应变?实验上如何利用晶格应变来促进反应性?该项目将通过多学科研究平台对各种正在进行的推广和教育计划产生深远的影响。从这项研究中获得的见解和知识将刺激NSF支持的S-STEM计划,宾厄姆顿大学的“跨学科卓越领域”活动和新的课程开发。该项目还将通过夏季研究计划,加强不同研究领域之间的联系,促进研究生和本科生的实验室培训活动。此外,该研究的成功将通过科学发现和由此产生的技术为公众带来多重利益。技术说明:对于贵金属纳米晶体,晶格应变通常会导致晶格收缩,其特征是d带中心下移,这削弱了物种在催化剂表面的吸附强度。该项目的目标是显着推进催化位点的发展与晶格应变,存在于几种类型的形状控制的国家的最先进的纳米晶体作为模型系统。晶格应力系统可以通过利用Mond工艺作为前所未有的蚀刻协议从含Ni的Ni-Cu前体产生。相关的去合金化机制将深入理解,通过系统的结构分析的高度多孔的纳米框架产生的气体去合金化过程。通过使用几种典型反应(包括但不限于ORR、HER和eCO 2 RR)评估其电催化性能,将实施具有和不具有应变应力的所识别性能的比较,并且将揭示为调节电催化活性提供指导的反应性-应变相关性。本文所提出的Pt-Ni前驱体也将被推广到其他的金属间化合物体系,如Cu-Ni、Ag-Ni、Pd-Ni和含Fe的金属间化合物体系。该项目将对催化活性的机械起源的开发以及电催化性能改进的新见解产生深远的影响。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enhanced ORR Kinetics on Au-Doped Pt–Cu Porous Films in Alkaline Media
- DOI:10.1021/acscatal.0c02690
- 发表时间:2020-08
- 期刊:
- 影响因子:12.9
- 作者:Yu-duan Xie;Yao Yang;D. Muller;H. Abruña;N. Dimitrov;Jiye Fang
- 通讯作者:Yu-duan Xie;Yao Yang;D. Muller;H. Abruña;N. Dimitrov;Jiye Fang
Facet-dependent Catalysis of CuNi Nanocatalysts toward 4–Nitrophenol Reduction Reaction
CuNi纳米催化剂对4-硝基苯酚还原反应的面依赖性催化
- DOI:10.1557/adv.2020.5
- 发表时间:2020
- 期刊:
- 影响因子:0.8
- 作者:Li, Can;Luan, Yiliang;Zhao, Bo;Kumbhar, Amar;Chen, Xiaobo;Collins, David;Zhou, Guangwen;Fang, Jiye
- 通讯作者:Fang, Jiye
Size-Controlled Synthesis of CuNi Nano-Octahedra and Their Catalytic Performance towards 4-Nitrophenol Reduction Reaction
CuNi纳米八面体的尺寸控制合成及其对4-硝基苯酚还原反应的催化性能
- DOI:10.1557/adv.2019.47
- 发表时间:2019
- 期刊:
- 影响因子:0.8
- 作者:Li, Can;Luan, Yiliang;Zhao, Bo;Kumbhar, Amar;Fang, Jiye
- 通讯作者:Fang, Jiye
Nanoscale Design of Pd‐Based Electrocatalysts for Oxygen Reduction Reaction Enhancement in Alkaline Media
- DOI:10.1002/sstr.202100188
- 发表时间:2021-12
- 期刊:
- 影响因子:15.9
- 作者:Ming Zhou;Jiangna Guo;Jiye Fang
- 通讯作者:Ming Zhou;Jiangna Guo;Jiye Fang
Nanoporous Pd-Cu thin films as highly active and durable catalysts for oxygen reduction in alkaline media
- DOI:10.1016/j.electacta.2021.138306
- 发表时间:2021-04
- 期刊:
- 影响因子:6.6
- 作者:Yu-duan Xie;Can Li;Ezer Castillo;Jiye Fang;N. Dimitrov
- 通讯作者:Yu-duan Xie;Can Li;Ezer Castillo;Jiye Fang;N. Dimitrov
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiye Fang其他文献
One further step to cell behaviour understanding
- DOI:
10.1039/c7qi00103g - 发表时间:
2017-05 - 期刊:
- 影响因子:7
- 作者:
Jiye Fang - 通讯作者:
Jiye Fang
A Novel Approach for the Preparation of InP Nanocrystals
一种制备 InP 纳米晶的新方法
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Zhaoyong Sun;Jun Zhang;Ming Zhang;Jiye Fang - 通讯作者:
Jiye Fang
Dielectrophoretic placement of quasi‐zero‐, one‐, and two‐dimensional nanomaterials into nanogap for electrical characterizations
将准零、一维和二维纳米材料介电泳放置到纳米间隙中以进行电学表征
- DOI:
10.1002/elps.201200145 - 发表时间:
2012 - 期刊:
- 影响因子:2.9
- 作者:
Yen‐Fu Lin;Shao;Sheng;Sheng;Chien;Wenguang Xie;Sheng;Chain‐Shu Hsu;Jenn‐Fang Chen;Xufeng Zhou;Zhaoping Liu;Jiye Fang;W. Jian - 通讯作者:
W. Jian
Orbital susceptibilities of PbSe quantum dots.
PbSe 量子点的轨道磁化率。
- DOI:
10.1063/1.2168444 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
W. Jian;W. Lu;Jiye Fang;S. Chiang;M. Lan;C. Wu;Z. Wu;F. Chen;J. Kai - 通讯作者:
J. Kai
Colloidal Preparation of γ-Fe 2 O 3 @Au [core@shell] Nanoparticles
γ-Fe 2 O 3 @Au[核@壳]纳米粒子的胶体制备
- DOI:
10.1557/proc-774-o7.15 - 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Jiye Fang;Jibao He;Eunhye Shin;Deborah A. Grimm;C. O'connor;M. Jun - 通讯作者:
M. Jun
Jiye Fang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiye Fang', 18)}}的其他基金
CAREER: Synthesis, Self-Assembly and Characterization of Mn-doped III-V DMS QDs for Spintronic Importance
职业:Mn 掺杂 III-V DMS 量子点的合成、自组装和表征对自旋电子学的重要性
- 批准号:
0731382 - 财政年份:2007
- 资助金额:
$ 50.41万 - 项目类别:
Continuing Grant
CAREER: Synthesis, Self-Assembly and Characterization of Mn-doped III-V DMS QDs for Spintronic Importance
职业:Mn 掺杂 III-V DMS 量子点的合成、自组装和表征对自旋电子学的重要性
- 批准号:
0449580 - 财政年份:2005
- 资助金额:
$ 50.41万 - 项目类别:
Continuing Grant
相似海外基金
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
$ 50.41万 - 项目类别:
Studentship
Exploiting JWST to Unveil Our Icy Universe
利用 JWST 揭示我们的冰冷宇宙
- 批准号:
2906887 - 财政年份:2024
- 资助金额:
$ 50.41万 - 项目类别:
Studentship
PriorCircuit:Circuit mechanisms for computing and exploiting statistical structures in sensory decision making
PriorCircuit:在感官决策中计算和利用统计结构的电路机制
- 批准号:
EP/Z000599/1 - 财政年份:2024
- 资助金额:
$ 50.41万 - 项目类别:
Research Grant
New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
- 批准号:
EP/Z000688/1 - 财政年份:2024
- 资助金额:
$ 50.41万 - 项目类别:
Research Grant
Exploiting protein import to interrogate energy transduction through the bacterial cell envelope
利用蛋白质输入来询问通过细菌细胞包膜的能量转导
- 批准号:
BB/X016366/1 - 财政年份:2024
- 资助金额:
$ 50.41万 - 项目类别:
Research Grant
Exploiting Controlled Environments for the Development of Optimised Cannabis Sativa Phenotypes for Pharmaceutical Applications - CE-CannPharm
利用受控环境开发用于制药应用的优化大麻表型 - CE-CannPharm
- 批准号:
BB/Z514470/1 - 财政年份:2024
- 资助金额:
$ 50.41万 - 项目类别:
Research Grant
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
- 批准号:
2340631 - 财政年份:2024
- 资助金额:
$ 50.41万 - 项目类别:
Continuing Grant
CAREER: Structure Exploiting Multi-Agent Reinforcement Learning for Large Scale Networked Systems: Locality and Beyond
职业:为大规模网络系统利用多智能体强化学习的结构:局部性及其他
- 批准号:
2339112 - 财政年份:2024
- 资助金额:
$ 50.41万 - 项目类别:
Continuing Grant
ActBio: Exploiting the Parallels between Active Matter and Mechanobiology
ActBio:利用活性物质与机械生物学之间的相似之处
- 批准号:
EP/Y033981/1 - 财政年份:2024
- 资助金额:
$ 50.41万 - 项目类别:
Research Grant