Energy Efficiency in Computing Logical Operations: Fundamental Limits with and Without Feedback
计算逻辑运算的能源效率:有反馈和无反馈的基本限制
基本信息
- 批准号:1809194
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The exponential increase in the ability to compute and store massive amount of data is fueling transformative changes in the human condition. It has led to a highly connected world with information being accessible at remote parts of the world. The current focus on interconnection of infrastructural systems such as the, power grid, financial markets, health care systems, and the Internet of Things (IoT), all bear a direct relationship to the advances in the integrated chips, where the complexity and the number of components has doubled almost every two years, following the Moore's law. Less known is the fact that the energy dissipation per computation has outpaced Moore's law which is at the heart of the mobile computation revolution, enabling, small form-factor devices packed with high computational capabilities that include, light laptops, tablets, and cell-phones. With such exponential increases, it is inevitable that limits of current approaches and practices for computation and memory related technologies are reached. This proposal addresses the basic operations of computation and memory with respect to the fundamental limits on the energy dissipation needed to perform the operations. It also studies the energy cost associated with measurement and feedback actions for performing computing and memory management operations. It provides proof of concept experiments and methods to demonstrate realizability of the computational and memory related operations with energetics tens of order smaller than the current practices. The associated analysis of fundamental primitives of computational operations and the proof of concept experiments will guide realizations of future energy efficient computational platforms and will continue the remarkable increase in speed and efficiencies with which computations are performed.The focus of the project is on the fundamental limits on the energetics of computations and memory. The project investigates primitives of computational operations both analytically and experimentally. It uses the abstraction of the state of a memory bit via the position of a particle in a double well potential in a thermal bath. Transfer of particle across the wells in a potential landscape is used to realize AND, NOT and erasure operations. Under the project goals, bounds on the minimum energetics of transferring the state of the particle in the double well potential will be analytically derived. Here, key aspect of the approach is to estimate the change in entropy from the initial to the final state, and, relating the change in entropy to the energy associated with the transfer of state. The transfer of state can be accomplished with or without measuring the state of the particle in the double well potential; here, the effect of feedback where the measurement guides the protocol for transferring the state will be understood and analyzed. The theoretical foundations that link computations, statistical mechanics, and feedback will be accompanied by a versatile experimental platform. Double-well potentials will be realized by controlling optical fields which have the scale of energetics suited for the study. The experimental protocols will accommodate the need for different speeds of transferring the state; important to emulate quasi-static processes. Accurate and precise measurements of the position of the particle will be used for the estimation of the energy required in moving the particle across wells. The measurement protocols will be precisely characterized that will enable the study of closed-loop strategies that alter the transfer protocol based on measurements. The project will provide both analytics and proof-of-concept experimental realizations of basic primitives of computations with orders in magnitude smaller energy footprint.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
计算和存储海量数据的能力呈指数级增长,正在推动人类状况的变革性变化。它导致了一个高度互联的世界,世界上偏远地区都可以访问信息。目前对基础设施系统互联的关注,如电网、金融市场、医疗保健系统和物联网(IoT),都与集成芯片的进步有直接关系,根据摩尔定律,集成芯片的复杂性和组件数量几乎每两年翻一番。不太为人所知的是,每次计算的能量消耗已经超过了摩尔定律,摩尔定律是移动计算革命的核心,使具有高计算能力的小型设备成为可能,包括轻型笔记本电脑、平板电脑和手机。随着这种指数级的增长,当前计算和内存相关技术的方法和实践将不可避免地达到极限。该提案针对执行运算所需的能量消耗的基本限制来处理计算和存储的基本运算。它还研究了与执行计算和内存管理操作的测量和反馈操作相关的能源成本。它提供了概念证明、实验和方法,以演示与计算和记忆相关的运算的可实现性,其能量比目前的实践低几十个数量级。对计算操作基本原理的相关分析和概念验证实验将指导未来高能效计算平台的实现,并将继续显著提高执行计算的速度和效率。该项目的重点是计算和内存的能量学基本限制。该项目从分析和实验两方面研究计算操作的原语。它通过热浴中粒子在双势垒势中的位置来抽象记忆位的状态。在潜在地貌中,颗粒在井中的传输用于实现AND、NOT和擦除操作。在该项目的目标下,将解析地导出在双势垒势中转移粒子状态的最小能量学的界限。这里,该方法的关键方面是估计从初始状态到最终状态的熵的变化,并将熵的变化与与状态转移相关的能量联系起来。状态的转移可以在测量或不测量双势垒势中的粒子的状态的情况下完成;在这里,将理解和分析反馈的效果,其中测量指导用于转移状态的协议。将计算、统计力学和反馈联系在一起的理论基础将伴随着一个多功能的实验平台。通过控制具有适合研究的能量学尺度的光场,将实现双势垒势。实验协议将适应不同状态传输速度的需要;这对于模拟准静态过程很重要。准确和精确地测量颗粒的位置将用于估计在井间移动颗粒所需的能量。测量协议将被精确地表征,这将使得能够研究基于测量来改变传输协议的闭环策略。该项目将提供基本原始计算的分析和概念验证实验实现,其量级较小。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Differential Entropy of Mixtures: New Bounds and Applications
- DOI:10.1109/tit.2022.3140661
- 发表时间:2022-04-01
- 期刊:
- 影响因子:2.5
- 作者:Melbourne,James;Talukdar,Saurav;Salapaka,Murti
- 通讯作者:Salapaka,Murti
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Murti Salapaka其他文献
Murti Salapaka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Murti Salapaka', 18)}}的其他基金
The 9th Midwest Workshop on Control and Game Theory, April 22-23, 2023
第九届中西部控制与博弈论研讨会,2023 年 4 月 22-23 日
- 批准号:
2318371 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
RAPID: COVID-19 Transmission Network Reconstruction from Time-Series Data
RAPID:根据时间序列数据重建 COVID-19 传输网络
- 批准号:
2030096 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Thermal-Noise-Based Mechanisms for Intracellular Motion, with Application to Engineered Systems
合作研究:了解基于热噪声的细胞内运动机制,并应用于工程系统
- 批准号:
1462862 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Learning from cells to create transportation infrastructure at the micron scale
CPS:协同:协作研究:向细胞学习以创建微米级的交通基础设施
- 批准号:
1544721 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Enabling Probe Based Nanointerrogation: A systems and controls approach
实现基于探针的纳米询问:一种系统和控制方法
- 批准号:
1202411 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CIF: Small: Collaborative Research: Signal processing for enabling high speed probe based nanoimaging
CIF:小型:协作研究:用于实现基于高速探针的纳米成像的信号处理
- 批准号:
1116971 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Less Conservative Criteria for Analysis and Synthesis of Nonlinear Systems
非线性系统分析和综合的不太保守的标准
- 批准号:
0900113 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Dynamic Mode, High Density, Probe Based Data Storage
协作研究:动态模式、高密度、基于探针的数据存储
- 批准号:
0802117 - 财政年份:2008
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Model-Based Ultrafast High Resolution Nano-Interrogation
基于模型的超快高分辨率纳米询问
- 批准号:
0814612 - 财政年份:2007
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Systems Approach to Dynamic Atomic Force Microscopy
动态原子力显微镜的系统方法
- 批准号:
0814615 - 财政年份:2007
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
CRII: CSR: Enabling On-Device Continual Learning through Enhancing Efficiency of Computing, Memory, and Data
CRII:CSR:通过提高计算、内存和数据的效率实现设备上的持续学习
- 批准号:
2348376 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Malleability in resource allocation for improved system efficiency in high-performance computing
资源分配的可塑性可提高高性能计算的系统效率
- 批准号:
EP/Y53061X/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Scalable Federated Learning and Analytics with Communication Efficiency in Mobile Cloud Computing
移动云计算中具有通信效率的可扩展联合学习和分析
- 批准号:
RGPIN-2022-04782 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
CRII: OAC: High-Efficiency Serverless Computing Systems for Deep Learning: A Hybrid CPU/GPU Architecture
CRII:OAC:用于深度学习的高效无服务器计算系统:混合 CPU/GPU 架构
- 批准号:
2153502 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Design of Intelligent Controllers to Maximize Efficiency and Guarantee Security, Privacy, and Fairness in Heterogeneous Computing and Sensing Systems
设计智能控制器以最大限度地提高异构计算和传感系统的效率并保证安全、隐私和公平
- 批准号:
RGPIN-2019-04936 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Investigation of the efficiency of spin-orbit torque induced magnetization switching in Functional oxide/ ferromagnetic stack films for a new In-memory computing
研究用于新内存计算的功能氧化物/铁磁堆栈薄膜中自旋轨道扭矩引起的磁化切换的效率
- 批准号:
21K14522 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Design of Intelligent Controllers to Maximize Efficiency and Guarantee Security, Privacy, and Fairness in Heterogeneous Computing and Sensing Systems
设计智能控制器以最大限度地提高异构计算和传感系统的效率并保证安全、隐私和公平
- 批准号:
RGPIN-2019-04936 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Design of Intelligent Controllers to Maximize Efficiency and Guarantee Security, Privacy, and Fairness in Heterogeneous Computing and Sensing Systems
设计智能控制器以最大限度地提高异构计算和传感系统的效率并保证安全、隐私和公平
- 批准号:
RGPIN-2019-04936 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Circuit Design Methodology for Design Efficiency and Low Power Consumption on Approximate Computing
基于近似计算的设计效率和低功耗电路设计方法
- 批准号:
20K11737 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
SCALE - Soft Computing to Accelerate fulfilment & Logistics Efficiency - Bezos and Liverpool University
SCALE - 加速实现的软计算
- 批准号:
45624 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Study