Ultra-Low Noise Mechanical Frequency-Divided MEMS-Based Oscillator
基于 MEMS 的超低噪声机械分频振荡器
基本信息
- 批准号:1809319
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research program aims to harness new capabilities in miniature mechanics that enable portable personal radar with resolution commensurate with much larger radars used on demanding platforms, such as planes, boats, and tracking systems. Here, because the resolution of any radar depends heavily on the stability of its interrogating signal, the quality of the internal oscillator that generates this signal is among the most important determinants of radar performance. It is for this reason that the most capable radars use frequency signal generators based on 'Poseidon' oscillators that derive their stability from bulky (and expensive) sapphire-loaded cavity resonators. However, the size and cost of this approach restricts it to use in large non-portable applications. The research herein breaks this paradigm by recognizing that an oscillator referenced to an ensemble of tiny mechanically resonant structures constructed in diamond material can potentially equal and perhaps outperform a Poseidon oscillator, all in a substantially smaller form factor. Indeed, sizes small enough to enable high-resolution personal radar might be within reach, and this could enable a host of new personal capabilities, including ranging, remote location services, and local area sensing to identify opportunities, e.g., sales on interesting items, favorite foods, etc., as one walks past them.The research specifically explores parametric mechanical frequency division using micromechanical resonators and sub-20-nanometer electrode-to-resonator gaps that together propel the short-term stability and figure-of-merit of oscillators towards that of the best radar oscillators, but in substantially smaller size. Here, tiny electrode-to-resonator gaps enabled by advances in nanofabrication technology increase the electromechanical coupling of capacitive-gap transduced micromechanical resonators to ranges that support gigaHertz oscillators, all while retaining their record-setting quality factors, both of which drive down phase noise and power consumption. Sub-20-nanometer gaps also permit wider frequency tuning, as well as the use of parametric excitation at higher resonance frequencies, which in turn enables mechanical approaches to reducing phase noise further via a combination of frequency division and close-to-carrier filtering, all with nearly no power penalty. While gap reduction enables unprecedented micromechanical resonator and oscillator performance, it also elucidates fundamental physical limitations expected to manifest more prominently at the nano-scale, including nonlinear noise multiplication, undue injection locking, Casimir forces, enhanced (unwanted) acceleration sensitivity, and less resilience against finite fabrication tolerances and stress. While possibly detrimental to performance, these physical limitations open fertile ground for scientific study. Indeed, lessons learned by modeling the influence of nonlinearity on oscillator limiting and phase noise are likely key to propelling micromechanical oscillators into the stated higher end applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项研究计划旨在利用微型机械的新能力,使便携式个人雷达具有与要求苛刻的平台(如飞机、船只和跟踪系统)上使用的更大雷达相称的分辨率。在这里,由于任何雷达的分辨率在很大程度上取决于其询问信号的稳定性,所以产生该信号的内部振荡器的质量是决定雷达性能的最重要因素之一。正是出于这个原因,最有能力的雷达使用基于‘定海神号’振荡器的频率信号发生器,这种振荡器的稳定性来自体积庞大(且昂贵)的蓝宝石加载的腔体谐振器。然而,这种方法的大小和成本限制了它在大型非便携应用程序中的使用。这里的研究打破了这一范式,因为它认识到,振荡器指的是用钻石材料建造的微小机械共振结构的集合,它可能与海神振荡器等同,甚至可能性能优于海神振荡器,所有这些都具有更小的外形系数。事实上,足够小到能够实现高分辨率个人雷达的尺寸可能是触手可及的,这可以使一系列新的个人能力,包括测距、远程定位服务和局域传感,在人们经过它们时识别机会,例如,有趣的商品、最喜欢的食物等。研究特别探索了使用微机械谐振器和亚20纳米电极到谐振器的间隙的参数机械分频,这些共同推动振荡器的短期稳定性和优点系数接近最好的雷达振荡器,但体积要小得多。在这里,由于纳米制造技术的进步,微小的电极到谐振器间隙将电容间隙传感器微机械谐振器的机电耦合提高到支持千兆赫振荡器的范围,同时保持其创纪录的品质因数,这两者都降低了相位噪声和功耗。低于20纳米的间隙还允许更宽的频率调谐,以及在更高的共振频率下使用参数激励,这反过来又使机械方法能够通过分频和近载波滤波的组合进一步降低相位噪声,所有这些都几乎没有功率损失。虽然间隙减小能够实现前所未有的微机械谐振器和振荡器的性能,但它也阐明了预计将在纳米级更加突出的基本物理限制,包括非线性噪声倍增、过度注入锁定、Casimir力、增强的(不需要的)加速度灵敏度以及对有限制造公差和应力的弹性降低。虽然这些身体限制可能不利于表现,但却为科学研究提供了肥沃的土壤。事实上,通过建模非线性对振荡器限制和相位噪声的影响所获得的经验教训可能是推动微机械振荡器进入所述高端应用的关键。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Parametric MEMS Oscillator-Based Super-Regenerative Receiver Front-End
基于参数 MEMS 振荡器的超再生接收器前端
- DOI:10.1109/fcs.2019.8856028
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Peleaux, Kieran A.;Nguyen, Thanh-Phong K.;Anton, Alain;Ren, Zeying;Nguyen, Clark T.-C.
- 通讯作者:Nguyen, Clark T.-C.
On-Chip Precision Residual Strain Diagnostic Based on Gap-Dependent Electrical Stiffness
基于间隙相关电刚度的片上精密残余应变诊断
- DOI:10.1109/transducers.2019.8808299
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Ozgurluk, Alper;Nguyen, Clark T.-C.
- 通讯作者:Nguyen, Clark T.-C.
Performance Enhancement and Restoration of Micromechanical Resonators Via UV-Ozone Treatment
通过紫外线臭氧处理增强和恢复微机械谐振器的性能
- DOI:10.1109/mems51782.2021.9375184
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Xie, Qianyi;Afshar, Sherwin A.;Ozgurluk, Alper;Nguyen, Clark T.-C.
- 通讯作者:Nguyen, Clark T.-C.
Low-Power MEMS-Based Pierce Oscillator Using a 61-MHz Capacitive-Gap Disk Resonator
- DOI:10.1109/tuffc.2020.2969530
- 发表时间:2020-07-01
- 期刊:
- 影响因子:3.6
- 作者:Naing, Thura Lin;Rocheleau, Tristan O.;Nguyen, Clark T. -C.
- 通讯作者:Nguyen, Clark T. -C.
Single-Digit-Nanometer Capacitive-Gap Transduced Micromechanical Disk Resonators
- DOI:10.1109/mems46641.2020.9056204
- 发表时间:2020-01
- 期刊:
- 影响因子:0
- 作者:A. Ozgurluk;Kieran Peleaux;C. Nguyen
- 通讯作者:A. Ozgurluk;Kieran Peleaux;C. Nguyen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Clark Nguyen其他文献
Clark Nguyen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Clark Nguyen', 18)}}的其他基金
QCIS-FF: Quantum Computing & Information Science Faculty Fellow at UC-Berkeley
QCIS-FF:量子计算
- 批准号:
2013571 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Micromachined VHF to UHF Mechanical Resonators for Communications Applications
用于通信应用的微机械 VHF 至 UHF 机械谐振器
- 批准号:
9530190 - 财政年份:1996
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
相似国自然基金
骨髓微环境中正常造血干/祖细胞新亚群IL7Rα(-)LSK(low)细胞延缓急性髓系白血病进程的作用及机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
MSCEN聚集体抑制CD127low单核细胞铜死亡治疗SLE 的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
CD9+CD55low脂肪前体细胞介导高脂诱导脂肪组织炎症和2型糖尿病的作用和机制研究
- 批准号:82270883
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
新型PDL1+CXCR2low中性粒细胞在脉络膜新生血管中的作用及机制研究
- 批准号:82271095
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
CD21low/-CD23-B细胞亚群在间质干细胞治疗慢性移植物抗宿主病中的作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
探究Msi1+Lgr5neg/low肠道干细胞抵抗辐射并驱动肠上皮再生的新机制
- 批准号:82270588
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
m6A去甲基化酶FTO通过稳定BRD9介导表观重塑在HIF2α(low/-)肾透明细胞癌中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:54.7 万元
- 项目类别:面上项目
circEFEMP1招募PRC2促进HOXA6启动子组蛋白甲基化修饰调控Claudin4-Low型TNBC迁移侵袭和转移的作用机制
- 批准号:82002807
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
上皮间质转化在Numb-/low前列腺癌细胞雄激素非依赖性中的作用及机制
- 批准号:82003061
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Bach2调控CD45RA-Foxp3low T细胞影响B细胞功能及其在系统性红斑狼疮中作用的机制研究
- 批准号:81873863
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
相似海外基金
Ultra-low noise magnetic environments
超低噪声磁场环境
- 批准号:
ST/Y509978/1 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Research Grant
Ultra Low Phase Noise Analysis & Measurement
超低相位噪声分析
- 批准号:
10089379 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Collaborative R&D
The Realization of Next-Generation Integrated Millimeter-Wave Systems Based On Ultra-Low-Noise Frequency Synthesis Techniques
基于超低噪声频率合成技术的下一代集成毫米波系统的实现
- 批准号:
22KJ0659 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of ultra-low-noise amplifier using spin maser in diamond for microwave quantum technologies
使用金刚石中的自旋微波激射器开发用于微波量子技术的超低噪声放大器
- 批准号:
23KJ2135 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Ultra-low distortion and noise electronics to enable a clinical MPI imaging platform
超低失真和噪声电子器件支持临床 MPI 成像平台
- 批准号:
10761613 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
SBIR Phase I: Low Noise Amplifier Running Fast At Ultra-low Currents (pp # 00035239)
SBIR 第一阶段:低噪声放大器在超低电流下快速运行(pp
- 批准号:
2208366 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Ultra-low-noise Superconducting Spectrometer Technology for Astrophysics
天体物理学超低噪声超导光谱仪技术
- 批准号:
ST/V000837/2 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Research Grant
Ultra-low-noise Superconducting Spectrometer Technology for Astrophysics
天体物理学超低噪声超导光谱仪技术
- 批准号:
ST/V000837/1 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Research Grant
Neuro-CROWN:Optimized Ultra-Flexible CMOS Electrode Arrays for 3D, Low-Noise Neural Interfaces
Neuro-CROWN:用于 3D、低噪声神经接口的优化超灵活 CMOS 电极阵列
- 批准号:
10705770 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Neuro-CROWN:Optimized Ultra-Flexible CMOS Electrode Arrays for 3D, Low-Noise Neural Interfaces
Neuro-CROWN:用于 3D、低噪声神经接口的优化超灵活 CMOS 电极阵列
- 批准号:
10490983 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:














{{item.name}}会员




