Topological Insulator Field Effect Transistors for Memory and Sensors
用于存储器和传感器的拓扑绝缘体场效应晶体管
基本信息
- 批准号:1809399
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Relentless, Exponential progress on Complementary Metal-Oxide-Semiconductor (CMOS) technology over the last four decades has made possible the design and fabrication of the powerful silicon chips which are the engines of the microelectronics revolution which changed contemporary society: Computers, Smart Phones, Internet of things (IoT), Artificial Intelligence (AI), and the list goes on, there is no aspect of modern life that has not been touched by the silicon chip. Progress on conventional CMOS technology has however slowed down significantly, as miniaturization (according to Moore's Law) is reaching fundamental, physics imposed limits. To make progress possible "beyond CMOS", researchers around the world consider new approaches to use new materials (for example, topological insulators), and invent new types of transistors and new types of high-speed, high-density and low-power memory technology. Consequently, the goal of the research in this proposal is to further exploit our understanding of the properties of topological insulator nanowires and thin films to build new-concept field effect transistors with operational principles different than the conventional CMOS technology, while continuing to benefit from the existing vast experience semiconductor industry has accumulated over the years with this technology (CMOS). If successful, the outcomes of the proposed research will also include new memory devices and sensors, made possible by these topological insulator transistors. Graduate, undergraduates and high-school students will have the opportunity to interact with collaborators from Industry and Government Laboratories. The goal of the proposed research is to design and fabricate Topological- Insulator Field-Effect transistors platform to explore and exploit the potential of gate-controlled topological surface state for applications in new-concept nonvolatile memory and sensor devices. The specific aims of this proposal are: (i) to design and fabricate topological insulator transistors with large on-state current and near-zero off-state current; (ii) to explore gate design and device geometry for achieving robust and efficient control of the spin-polarized electron current; (iii) to exploit the spin-polarized electron current for spin-based logic and nonvolatile memory devices with low-power operation; and (iv) to exploit the resulting devices for enhancing the topological photoelectronic effect for infrared sensors with high sensitivity and selectivity. The research involves preparation of novel topological insulator nanowires and thin films, nanoscale device integration, and characterization, with a focus on achieving in the first instance high-quality topological insulator transistors. The topological insulator nanowires and thin films will be grown at wafer scale for in-situ device integration to achieve clean device interfaces and metal contacts. The topological insulator transistors will be fabricated with engineered gate/source/drain contacts and ferromagnetic insulator/channel interface to achieve: high on/off current ratio, large on-state current and sharp switching, with surface states efficiently tuned by the gate-source electric field. This proposal presents a complete route from materials preparation, to device integration and measurement, to applications focusing on logic transistors, nonvolatile memory and sensors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的四十年里,互补金属氧化物半导体(CMOS)技术的指数级进步使得设计和制造强大的硅芯片成为可能,这些芯片是改变当代社会的微电子革命的引擎:计算机、智能手机、物联网(IoT)、人工智能(AI),等等,现代生活的方方面面都与硅芯片有关。然而,由于小型化(根据摩尔定律)正达到基本的物理限制,常规CMOS技术的进展已显著放缓。为了使“超越CMOS”的进展成为可能,世界各地的研究人员考虑使用新材料(例如拓扑绝缘体)的新方法,并发明新型晶体管和新型高速,高密度和低功耗存储器技术。因此,本提案中研究的目标是进一步利用我们对拓扑绝缘体纳米线和薄膜特性的理解,构建具有不同于传统CMOS技术的工作原理的新概念场效应晶体管,同时继续受益于半导体行业多年来积累的大量经验。如果成功,拟议研究的成果还将包括新的存储设备和传感器,这些拓扑绝缘体晶体管使之成为可能。研究生,本科生和高中生将有机会与来自工业和政府实验室的合作者互动。本研究的目标是设计和制作拓扑绝缘体场效应晶体管平台,以探索和开发栅控拓扑表面态在新概念非易失性存储器和传感器器件中的应用潜力。本论文的主要目标是:(i)设计和制造具有大的通态电流和接近零的关态电流的拓扑绝缘体晶体管;(ii)探索栅极设计和器件几何结构,以实现对自旋极化电子电流的鲁棒和有效控制;(iii)利用自旋极化电子电流实现基于自旋的逻辑和非易失性存储器件的低功耗操作;以及(iv)利用所得到的器件来增强具有高灵敏度和选择性的红外传感器的拓扑光电效应。该研究涉及新型拓扑绝缘体纳米线和薄膜的制备,纳米级器件集成和表征,重点是首先实现高质量的拓扑绝缘体晶体管。拓扑绝缘体纳米线和薄膜将以晶片规模生长,用于原位器件集成,以实现清洁的器件界面和金属接触。拓扑绝缘体晶体管将被制造成具有工程化的栅极/源极/漏极接触和铁磁绝缘体/沟道界面,以实现:高开/关电流比、大的开态电流和急剧的开关,并且表面状态被栅极-源极电场有效地调谐。该提案提出了一个完整的路线,从材料制备,到器件集成和测量,再到专注于逻辑晶体管,非易失性存储器和传感器的应用。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Observation and control of the anomalous Aharonov-Bohm oscillation in enhanced-mode topological insulator nanowire field-effect transistors
- DOI:10.1063/1.5111180
- 发表时间:2019-08
- 期刊:
- 影响因子:4
- 作者:Hao Zhu;C. Richter;Sheng Yu;H. Ye;M. Zeng;Qiliang Li
- 通讯作者:Hao Zhu;C. Richter;Sheng Yu;H. Ye;M. Zeng;Qiliang Li
New families of large band gap 2D topological insulators in ethynyl-derivative functionalized compounds
- DOI:10.1016/j.apsusc.2019.04.071
- 发表时间:2019-08
- 期刊:
- 影响因子:6.7
- 作者:L. Wu;Kunming Gu;Qiliang Li
- 通讯作者:L. Wu;Kunming Gu;Qiliang Li
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qiliang Li其他文献
Superior Photodynamic Effect of Single-walled Carbon Nanotubes in Aprotic Media: A Kinetic Study
单壁碳纳米管在非质子介质中的优异光动力效应:动力学研究
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:9.3
- 作者:
Xiaozhou Huang;Erin Witherspoon;Rui He;Y. Li;Jingjiang Yu;Jin;Chao Luo;Matthew Li;Tongchao Liu;K. Amine;Qiliang Li;Zhe Wang;Pei Dong - 通讯作者:
Pei Dong
A 16 W Balanced Intensity Dual-Frequency Laser With 53 GHz Frequency Separation
具有 53 GHz 频率间隔的 16 W 平衡强度双频激光器
- DOI:
10.1109/jphot.2016.2605456 - 发表时间:
2016-09 - 期刊:
- 影响因子:2.4
- 作者:
Miao Hu;Mian Wei;Yu Zhang;Ju Cai;Ran Zeng;Qiliang Li - 通讯作者:
Qiliang Li
Approach for investigating lateral conduction in self-assembled monolayers
研究自组装单层横向传导的方法
- DOI:
10.1063/1.2152112 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
S. Gowda;G. Mathur;Qiliang Li;S. Surthi;V. Misra - 通讯作者:
V. Misra
Silicon Nanowire Field Effect Transistor Test Structures Fabricated by Top-down Approaches
自上而下方法制造的硅纳米线场效应晶体管测试结构
- DOI:
10.1109/isdrs.2005.1596037 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
S. Koo;Qiliang Li;M. D. Edelstein;C. Richter;E. Vogel - 通讯作者:
E. Vogel
Aminoguanidine alleviated the impairment of cognitive ability by down-regulating oxidative stress and inflammatory reaction in MMA-induced rats
氨基胍通过下调 MMA 诱导的大鼠氧化应激和炎症反应减轻认知能力损伤
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:3.4
- 作者:
Qiliang Li;Peichang Wang - 通讯作者:
Peichang Wang
Qiliang Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qiliang Li', 18)}}的其他基金
Collaborative Research: Surface Engineering and Atomic Layer Deposition of Dielectrics on Two-Dimensional Atomic Crystals for Device Application
合作研究:用于器件应用的二维原子晶体上电介质的表面工程和原子层沉积
- 批准号:
1407807 - 财政年份:2014
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
MRI: Acquisition of Electron Beam Evaporation System for Multidisciplinary Research and Education
MRI:采购电子束蒸发系统用于多学科研究和教育
- 批准号:
1127093 - 财政年份:2011
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CAREER: High Performance Nanowire FETs for Logic and Memory
职业:用于逻辑和内存的高性能纳米线 FET
- 批准号:
0846649 - 财政年份:2009
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似海外基金
Effects of electric field and pressure at the tip of air discharge on penetration of the insulator
空气放电尖端电场和压力对绝缘体击穿的影响
- 批准号:
19K14973 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Carrier imaging analyses of interfacial traps on gate insulator in organic field-effect transistors
有机场效应晶体管栅极绝缘体界面陷阱的载流子成像分析
- 批准号:
19K15432 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Modelling and Simulation of Electo-quasistatic Fields in Insulator Materials of High-Voltage Direct Current Cables and Cable Terminations with Nonlinear Effects due to Temperature and Space Charge Distributions and Nonlinear Field Grading Materials
由于温度和空间电荷分布以及非线性场分级材料而具有非线性效应的高压直流电缆和电缆终端的绝缘体材料中的电准静态场的建模和仿真
- 批准号:
420660738 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Research Grants
Using an Insulator-Metal Transition to Overcome the Fundamental Limits of Non-Volatile Memory Based on Ferroelectric Field Effect Transistors
利用绝缘体-金属转变克服基于铁电场效应晶体管的非易失性存储器的基本限制
- 批准号:
1914730 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Electric field control of magnetization dynamics in ferromagnetic insulator
铁磁绝缘体磁化动力学的电场控制
- 批准号:
18K19021 - 财政年份:2018
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Metal-Insulator Phase Transition at the Near-Field Interface and its Application to Thermal Switching
近场界面金属-绝缘体相变及其在热开关中的应用
- 批准号:
18K13699 - 财政年份:2018
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of liquid metal probes for conductivity measurements in organic field-effect transistors on insulator substrates
开发用于绝缘体基板上有机场效应晶体管电导率测量的液态金属探针
- 批准号:
16K17518 - 财政年份:2016
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Local field fluctuation comes from insulator-to-metal transition in zeolite
局部场波动来自沸石中的绝缘体到金属的转变
- 批准号:
16K05462 - 财政年份:2016
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Electric field control of the interfacial magnetizm in ferromagnet/insulator structure
铁磁体/绝缘体结构中界面磁化强度的电场控制
- 批准号:
16H06081 - 财政年份:2016
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
Electric-field control of surface plmons on Mott-insulator oxides
莫特绝缘体氧化物表面等离子体的电场控制
- 批准号:
15K13331 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research














{{item.name}}会员




