Broadband Electrical Sensing of Nuclear Morphology and DNA Content in a Single Live Cell

单个活细胞中核形态和 DNA 含量的宽带电传感

基本信息

  • 批准号:
    1809623
  • 负责人:
  • 金额:
    $ 35.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-06-30 至 2022-12-30
  • 项目状态:
    已结题

项目摘要

New approaches to sense intra-cellular properties such as nuclear characteristics in a compact and non-invasive fashion are needed to increase the speed and accuracy of cancer diagnosis. Such approaches will also enable real-time dynamic monitoring of a cell nucleus, which can contribute to fundamental understanding of cell development and malignancy progression. Currently, nuclear morphology and DNA content are inspected through optical microscopy and flow cytometry, both are bulky, delicate and require cell labeling. To satisfy the need of portable and inexpensive technologies for cancer screening, broadband electrical sensing is proposed here to extract information about nuclear morphology and DNA content from a single cell. The proposed work is built on the research team's work in broadband electrical sensing of single-cell intra-cellular resistance and capacitance. The proposed electrical sensor can be readily integrated with a lab-on-chip system to enable its wide-spread use at the point of care, which will have broader impacts on healthcare. The capability to monitor intra-cellular organelles without physically penetrating a cell membrane not only will contribute to cancer cytology, but also will permit real-time monitoring of nuclear dynamics, which can transform the research on cell development, cancer therapeutics, and many other aspects of cell biology. Through classroom teaching, conferences, publications, and other outreach efforts, knowledge from this research will be disseminated to students, professionals, and general public. The research will allow multi-disciplinary training to participating K-12, undergraduate and graduate students, especially female and minority students. The PI and co-PI have strong track records in recruiting underrepresented students to research and graduate education.The proposed research intends to build a microwave equivalent of confocal microscopy for single cell depth profiling, revealing intracellular details such as alterations in nuclear morphology and DNA content. This work is based on the hypothesis that broadband electrical sensing can reveal dielectric properties of different intra-cellular compartments that have distinct complex permittivities and relaxation frequencies. The following aims will be achieved: 1) Design and fabricate multi-port coplanar waveguides with sensitivity and spatial resolution meeting the needs for intra-cellular broadband electrical sensing from 9 kHz to 9 GHz. 2) Develop a multi-scale model to understand the interaction of electric fields with cell membrane, cytoplasm and nucleus, including variation of the size, shape and location of the nucleus as well as its DNA content. 3) Perform broadband electrical sensing and signal analysis of single live human cells to validate the multi-scale model and to extract nuclear morphology and DNA content. Knowledge from this research will provide fundamental understanding of how electric fields interact with a cell and its organelles in a broad range of frequencies. Broadband electrical biosensors and multi-scale models will be developed to allow dielectric characterization of intra-cellular compartments with high spatial resolution, signal-to-noise ratio, throughput and reproducibility, which will broadly impact both bioengineering and electrical engineering, especially bioelectronics, biophysics, cancer biology and cell biology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
需要以紧凑和非侵入性方式感测细胞内特性(例如核特征)的新方法来提高癌症诊断的速度和准确性。这种方法还将实现对细胞核的实时动态监测,这可以有助于对细胞发育和恶性进展的基本理解。目前,核形态和DNA含量的检测通过光学显微镜和流式细胞术,这两个都是庞大的,微妙的,需要细胞标记。为了满足便携式和廉价的癌症筛查技术的需求,宽带电感测在这里提出了从单个细胞中提取有关核形态和DNA含量的信息。拟议的工作是建立在研究小组的工作在宽带电感测单细胞内的电阻和电容。所提出的电传感器可以很容易地与芯片实验室系统集成,使其能够在护理点广泛使用,这将对医疗保健产生更广泛的影响。无需物理穿透细胞膜即可监测细胞内细胞器的能力不仅将有助于癌症细胞学,而且还将允许实时监测核动力学,这可以改变细胞发育、癌症治疗和许多其他方面的研究细胞生物学。通过课堂教学,会议,出版物和其他推广工作,从这项研究的知识将传播给学生,专业人士和公众。该研究将允许参与K-12,本科生和研究生,特别是女性和少数民族学生的多学科培训。PI和co-PI在招募代表性不足的学生进行研究和研究生教育方面有着良好的记录。拟议的研究旨在建立一个微波等效的共聚焦显微镜用于单细胞深度分析,揭示细胞内的细节,如核形态和DNA含量的变化。这项工作是基于这样的假设,即宽带电感测可以揭示具有不同复介电常数和弛豫频率的不同细胞内隔室的介电性质。1)设计并制作出灵敏度和空间分辨率均满足9 kHz ~ 9 GHz蜂窝内宽带电学传感要求的多端口共面波导。2)建立一个多尺度模型,以了解电场与细胞膜、细胞质和细胞核的相互作用,包括细胞核的大小、形状和位置以及其DNA含量的变化。3)对单个活的人类细胞进行宽带电感测和信号分析,以验证多尺度模型并提取核形态和DNA含量。这项研究的知识将提供电场如何在广泛的频率范围内与细胞及其细胞器相互作用的基本理解。宽带电生物传感器和多尺度模型将被开发,以允许具有高空间分辨率、信噪比、通量和再现性的细胞内隔室的介电表征,这将广泛影响生物工程和电气工程,特别是生物电子学、生物物理学、该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识产权进行评估来支持。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Broadband electrical impedance as a novel characterization of oxidative stress in single L6 skeletal muscle cells
  • DOI:
    10.1016/j.aca.2021.338678
  • 发表时间:
    2021-06-02
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Ferguson, Caroline;Pini, Niccolo;Cheng, Xuanhong
  • 通讯作者:
    Cheng, Xuanhong
Broadband Electrical Sensing of a Live Biological Cell with In Situ Single-Connection Calibration
通过原位单连接校准对活生物细胞进行宽带电传感
  • DOI:
    10.3390/s20143844
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Ma, Xiao;Du, Xiaotian;Li, Lei;Ladegard, Caroline;Cheng, Xuanhong;Hwang, James C.
  • 通讯作者:
    Hwang, James C.
Ultra-Wideband Impedance Spectroscopy of a Live Biological Cell
Label-Free Noninvasive Cell Characterization: A Methodology Using Broadband Impedance Spectroscopy
无标记非侵入性细胞表征:使用宽带阻抗谱的方法
  • DOI:
    10.1109/mmm.2021.3056834
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Hwang, James C.M.
  • 通讯作者:
    Hwang, James C.M.
Correlation Between Optical Fluorescence and Microwave Transmission During Single-cell Electroporation
单细胞电穿孔过程中光学荧光与微波传输的相关性
  • DOI:
    10.1109/tbme.2018.2885781
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Li, Hang;Ma, Xiao;Du, Xiaotian;Li, Lei;Cheng, Xuanhong;Hwang, James C.
  • 通讯作者:
    Hwang, James C.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xuanhong Cheng其他文献

Unraveling Kinetics of Collapsed Polymers in Extensional Flow
揭示拉伸流动中塌陷聚合物的动力学
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    A. H. Nguyen;Sagar Kania;Xuanhong Cheng;A. Oztekin;X. F. Zhang;E. Webb
  • 通讯作者:
    E. Webb
Conjunctival Impression Cytology by Using a Thermosensitive Adhesive: Polymerized N-isopropyl Acrylamide
使用热敏粘合剂进行结膜印迹细胞学检查:聚合 N-异丙基丙烯酰胺
  • DOI:
    10.1097/ico.0b013e318196706d
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Murat Tunç;U. Yıldırım;Harun Yuksel;Xuanhong Cheng;M. Humayun;B. Ratner
  • 通讯作者:
    B. Ratner
Plasmonic Mach-Zehnder interferometer on a microfluidic chip for sensitive optical sensing
微流控芯片上的等离激元马赫-曾德尔干涉仪,用于灵敏光学传感
REVERSIBLE THERMOSENSITIVE GLUE FOR RETINAL IMPLANTS
用于视网膜植入物的可逆热敏胶
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Murat Tunç;Xuanhong Cheng;B. Ratner;E. Meng;M. Humayun
  • 通讯作者:
    M. Humayun
On-chip terahertz signal generators for near-field biosensor arrays
用于近场生物传感器阵列的片上太赫兹信号发生器

Xuanhong Cheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xuanhong Cheng', 18)}}的其他基金

Bioinspired, Single-molecule Based Shear Switchable Nanomaterials
仿生单分子剪切可切换纳米材料
  • 批准号:
    2004475
  • 财政年份:
    2020
  • 资助金额:
    $ 35.97万
  • 项目类别:
    Standard Grant
I-Corps: Commercialization of a Nanoparticle Concentration Apparatus
I-Corps:纳米粒子浓缩装置的商业化
  • 批准号:
    1624030
  • 财政年份:
    2016
  • 资助金额:
    $ 35.97万
  • 项目类别:
    Standard Grant
UNS:Coupling Thermophoresis with Engineered Convection for Label free, Continuous Bionanoparticle Concentration in Microfluidic Devices
UNS:将热泳与工程对流相结合,在微流体装置中实现无标记、连续的生物纳米粒子浓缩
  • 批准号:
    1511284
  • 财政年份:
    2015
  • 资助金额:
    $ 35.97万
  • 项目类别:
    Standard Grant

相似海外基金

NSF-BSF: Electrical mitigation of radiation-induced defects in InAs/GaSb structures for infrared sensing
NSF-BSF:用于红外传感的 InAs/GaSb 结构中辐射引起的缺陷的电气缓解
  • 批准号:
    2310285
  • 财政年份:
    2023
  • 资助金额:
    $ 35.97万
  • 项目类别:
    Standard Grant
Classifying Oral Lesions with Chip-on-tip Electrical Impedance Sensing
利用尖端芯片电阻抗传感对口腔病变进行分类
  • 批准号:
    10287597
  • 财政年份:
    2021
  • 资助金额:
    $ 35.97万
  • 项目类别:
Classifying Oral Lesions with Chip-on-tip Electrical Impedance Sensing
利用尖端芯片电阻抗传感对口腔病变进行分类
  • 批准号:
    10432090
  • 财政年份:
    2021
  • 资助金额:
    $ 35.97万
  • 项目类别:
Single bacteria sensing using nonlinear electrical impedance response in high electric field created in nano-scaled space
在纳米级空间中创建的高电场中使用非线性电阻抗响应进行单细菌传感
  • 批准号:
    20H02160
  • 财政年份:
    2020
  • 资助金额:
    $ 35.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Microendoscopic Electrical Impedance Sensing for Real-time Intraoperative Surgical Margin Assessment
用于实时术中手术边缘评估的显微内窥镜电阻抗传感
  • 批准号:
    10433913
  • 财政年份:
    2020
  • 资助金额:
    $ 35.97万
  • 项目类别:
Microendoscopic Electrical Impedance Sensing for Real-time Intraoperative Surgical Margin Assessment
用于实时术中手术边缘评估的显微内窥镜电阻抗传感
  • 批准号:
    10654771
  • 财政年份:
    2020
  • 资助金额:
    $ 35.97万
  • 项目类别:
Microendoscopic Electrical Impedance Sensing for Real-time Intraoperative Surgical Margin Assessment
用于实时术中手术边缘评估的显微内窥镜电阻抗传感
  • 批准号:
    10218115
  • 财政年份:
    2020
  • 资助金额:
    $ 35.97万
  • 项目类别:
Micro/Nano Fusion Process based Nanopore Sensing Device for Optical and Electrical Combined Detection
基于微纳融合工艺的光电联合检测纳米孔传感装置
  • 批准号:
    19H02571
  • 财政年份:
    2019
  • 资助金额:
    $ 35.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Distributed electrical current sensing for DC power networks
直流电网的分布式电流传感
  • 批准号:
    104954
  • 财政年份:
    2019
  • 资助金额:
    $ 35.97万
  • 项目类别:
    Collaborative R&D
Green - growing a reliably efficient electrical nanogrid: load sensing power conditioning of adaptively managed renewable power systems incorporating energy storage and generation
绿色——发展可靠高效的纳米电网:结合储能和发电的自适应管理可再生电力系统的负载传感功率调节
  • 批准号:
    477238-2014
  • 财政年份:
    2019
  • 资助金额:
    $ 35.97万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了