Bioinspired, Single-molecule Based Shear Switchable Nanomaterials
仿生单分子剪切可切换纳米材料
基本信息
- 批准号:2004475
- 负责人:
- 金额:$ 40.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Nontechnical Summary: Shear flow is widely present in physiological environments and contributes significantly to various normal and pathological processes, especially in the circulatory system. Consequently, biomaterials with structure and function tunable by shear represent powerful tools to detect and rectify pathological processes induced by abnormal flows in the body. For the past few decades, shear-responsive hydrogels and molecular assemblies have been widely explored. However, single-biomolecule based shear responders remains a poorly-tapped subject, despite such materials could better mimic natural functions in circulation, delivering more accurate spatial and temporal responses with function reversibility. This project will design and characterize novel Single-MOlecule based materials with switchable structures and functions REsponsive to Shear flows (SMORES). Owing to the modular design, the material concept can be generalized to other constructs capable of responding to abnormal flows in the circulatory system towards novel diagnostics and therapeutics for cardiovascular diseases in the long term. This project will provide fundamental insights into biomechanics of polymer devices under the influence of ligands and the flow environment, perspectives that have not been studied in depth before. Rational design of biomaterials containing both bio- and nonbio- functionalities to achieve predictable flow responses will advance the fields of materials science, biomechanics, bio-conjugation, molecular engineering and bio-transport. Knowledge from this work will enable new diagnostics and theranostics for hemostatic applications, advancing the national health. The PIs will actively recruit underrepresented students to their research and disseminated discoveries from the research broadly to the general public through various K12 outreach programs.Technical Summary: The design is inspired by a coagulation molecule in circulation, the von Willebrand Factor (vWF), which executes its function of crosslinking platelets to damaged blood vessel wall at shear rates 5,000 per sec. The function is switched on by conformational changes under high shear and is enabled by an extremely complicated molecular structure: vWF is comprised of tens to hundreds of monomer units, each of which contains more than ten domains. To demonstrate that an artificial material of modular design could achieve a similar function to vWF, i.e. binding cells at high shear, we propose the construction SMORES to inhibit or promote the cell binding activity of the vWF’s platelet binding domain under shear control. Shear dependent cell binding to the proposed material will be characterized and correlated with molecular conformations studied by single-molecular force spectroscopy, microfluidic imaging experiments and computer modeling. Besides demonstrating the material design concept, the proposed work will emphasize fundamental studies of single-molecule biomechanical behaviors in different biochemical environment, especially the presence and absence of ligands.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性总结:剪切流广泛存在于生理环境中,并对各种正常和病理过程,特别是在循环系统中有重要贡献。因此,具有可通过剪切调节的结构和功能的生物材料代表了检测和纠正体内异常流动引起的病理过程的有力工具。在过去的几十年里,剪切响应水凝胶和分子组装体已经被广泛探索。然而,基于单生物分子的剪切响应器仍然是一个开发不足的主题,尽管这样的材料可以更好地模拟循环中的自然功能,提供更准确的空间和时间响应与功能可逆性。该项目将设计和表征具有可切换结构和功能的新型单分子材料,以响应剪切流(SMORES)。由于模块化设计,材料概念可以推广到其他能够响应循环系统中的异常流动的结构,长期用于心血管疾病的新诊断和治疗。该项目将提供基本的见解聚合物设备的生物力学的配体和流动环境的影响下,以前没有深入研究的观点。合理设计具有生物和非生物功能的生物材料以实现可预测的流动响应将推动材料科学、生物力学、生物缀合、分子工程和生物运输领域的发展。这项工作的知识将使新的诊断和治疗诊断学用于止血应用,促进国民健康。PI将积极招募代表性不足的学生参与他们的研究,并通过各种K12外展计划向公众广泛传播研究发现。技术总结:该设计的灵感来自循环中的凝血分子von Willebrand Factor(vWF),它以每秒5,000的剪切速率执行将血小板交联到受损血管壁的功能。该功能通过高剪切下的构象变化来开启,并且通过极其复杂的分子结构来实现:vWF由数十至数百个单体单元组成,每个单体单元包含十个以上的结构域。为了证明模块化设计的人工材料可以实现与vWF类似的功能,即在高剪切下结合细胞,我们提出了SMORES结构,以抑制或促进剪切控制下vWF的血小板结合结构域的细胞结合活性。剪切依赖细胞结合到拟议的材料将被表征和相关的分子构象研究单分子力光谱,微流控成像实验和计算机建模。除了展示材料设计概念外,拟议的工作将强调在不同生物化学环境中的单分子生物力学行为的基础研究,特别是配体的存在和不存在。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Loss of pulsatility with continuous-flow left ventricular assist devices and the significance of the arterial endothelium in von-Willebrand factor production and degradation.
- DOI:10.1111/aor.14456
- 发表时间:2022-11
- 期刊:
- 影响因子:2.4
- 作者:G. Giridharan;Ian C. Berg;Esraa Ismail;Khanh T Nguyen;Jana Hecking;J. Kirklin;Xuanhong Cheng;P. Sethu
- 通讯作者:G. Giridharan;Ian C. Berg;Esraa Ismail;Khanh T Nguyen;Jana Hecking;J. Kirklin;Xuanhong Cheng;P. Sethu
Effect of pulsatility on shear-induced extensional behavior of Von Willebrand factor.
脉动性对剪切诱导的von Willebrand因子延伸行为的影响。
- DOI:10.1111/aor.14133
- 发表时间:2022-05
- 期刊:
- 影响因子:2.4
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xuanhong Cheng其他文献
Conjunctival Impression Cytology by Using a Thermosensitive Adhesive: Polymerized N-isopropyl Acrylamide
使用热敏粘合剂进行结膜印迹细胞学检查:聚合 N-异丙基丙烯酰胺
- DOI:
10.1097/ico.0b013e318196706d - 发表时间:
2009 - 期刊:
- 影响因子:2.8
- 作者:
Murat Tunç;U. Yıldırım;Harun Yuksel;Xuanhong Cheng;M. Humayun;B. Ratner - 通讯作者:
B. Ratner
Unraveling Kinetics of Collapsed Polymers in Extensional Flow
揭示拉伸流动中塌陷聚合物的动力学
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:5.5
- 作者:
A. H. Nguyen;Sagar Kania;Xuanhong Cheng;A. Oztekin;X. F. Zhang;E. Webb - 通讯作者:
E. Webb
Plasmonic Mach-Zehnder interferometer on a microfluidic chip for sensitive optical sensing
微流控芯片上的等离激元马赫-曾德尔干涉仪,用于灵敏光学传感
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Yongkang Gao;Qiaoqiang Gan;Xuanhong Cheng;F. Bartoli - 通讯作者:
F. Bartoli
REVERSIBLE THERMOSENSITIVE GLUE FOR RETINAL IMPLANTS
用于视网膜植入物的可逆热敏胶
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Murat Tunç;Xuanhong Cheng;B. Ratner;E. Meng;M. Humayun - 通讯作者:
M. Humayun
On-chip terahertz signal generators for near-field biosensor arrays
用于近场生物传感器阵列的片上太赫兹信号发生器
- DOI:
10.1109/rfit.2016.7578190 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
R. Hadi;Yan Zhao;Mau;Xuanhong Cheng;James C. M. Hwang - 通讯作者:
James C. M. Hwang
Xuanhong Cheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xuanhong Cheng', 18)}}的其他基金
Broadband Electrical Sensing of Nuclear Morphology and DNA Content in a Single Live Cell
单个活细胞中核形态和 DNA 含量的宽带电传感
- 批准号:
1809623 - 财政年份:2018
- 资助金额:
$ 40.36万 - 项目类别:
Standard Grant
I-Corps: Commercialization of a Nanoparticle Concentration Apparatus
I-Corps:纳米粒子浓缩装置的商业化
- 批准号:
1624030 - 财政年份:2016
- 资助金额:
$ 40.36万 - 项目类别:
Standard Grant
UNS:Coupling Thermophoresis with Engineered Convection for Label free, Continuous Bionanoparticle Concentration in Microfluidic Devices
UNS:将热泳与工程对流相结合,在微流体装置中实现无标记、连续的生物纳米粒子浓缩
- 批准号:
1511284 - 财政年份:2015
- 资助金额:
$ 40.36万 - 项目类别:
Standard Grant
相似国自然基金
基于Single Cell RNA-seq的斑马鱼神经干细胞不对称分裂调控机制研究
- 批准号:31601181
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
甲醇合成汽油工艺中烯烃催化聚合过程的单元步骤(single event)微动力学理论研究
- 批准号:21306143
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Shining light on single molecule dynamics: photon by photon
照亮单分子动力学:逐个光子
- 批准号:
EP/X031934/1 - 财政年份:2024
- 资助金额:
$ 40.36万 - 项目类别:
Research Grant
Development of single-protein-molecule isotropic microscopy
单蛋白质分子各向同性显微镜的发展
- 批准号:
24K18359 - 财政年份:2024
- 资助金额:
$ 40.36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
SCAnDi: Single-cell and single molecule analysis for DNA identification
SCAnDi:用于 DNA 鉴定的单细胞和单分子分析
- 批准号:
ES/Y010655/1 - 财政年份:2024
- 资助金额:
$ 40.36万 - 项目类别:
Research Grant
Understanding the coordination of DNA mismatch repair using live-cell single-molecule imaging
使用活细胞单分子成像了解 DNA 错配修复的协调
- 批准号:
BB/Y001567/1 - 财政年份:2024
- 资助金额:
$ 40.36万 - 项目类别:
Research Grant
Integrated multimodal microscopy facility for single molecule analysis
用于单分子分析的集成多模态显微镜设施
- 批准号:
LE240100086 - 财政年份:2024
- 资助金额:
$ 40.36万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Single molecule analysis of Human DNA replication
人类 DNA 复制的单分子分析
- 批准号:
BB/Y00549X/1 - 财政年份:2024
- 资助金额:
$ 40.36万 - 项目类别:
Research Grant
CAREER: Design Strategies for High-Performance Bismuth- and Lanthanide-Based Single-Molecule Magnets
职业:高性能铋基和镧系单分子磁体的设计策略
- 批准号:
2339595 - 财政年份:2024
- 资助金额:
$ 40.36万 - 项目类别:
Continuing Grant
A Coordination Chemistry Approach to the Synthesis of Single-Molecule Magnets
合成单分子磁体的配位化学方法
- 批准号:
2350466 - 财政年份:2024
- 资助金额:
$ 40.36万 - 项目类别:
Continuing Grant
Dissecting ribosome pausing during embryogenesis: from global and single molecule studies to whole embryo phenotypes
剖析胚胎发生过程中的核糖体暂停:从整体和单分子研究到整个胚胎表型
- 批准号:
BB/X007294/1 - 财政年份:2024
- 资助金额:
$ 40.36万 - 项目类别:
Research Grant
CAREER: Single-Molecule Study of Nucleic Acid Conformational Dynamics in Telomere
职业:端粒核酸构象动力学的单分子研究
- 批准号:
2338902 - 财政年份:2024
- 资助金额:
$ 40.36万 - 项目类别:
Continuing Grant