Spatially resolve three-dimensional tactile sensing using functionally graded piezoresistive pillar arrays

使用功能梯度压阻柱阵列空间解析三维触觉传感

基本信息

  • 批准号:
    1810402
  • 负责人:
  • 金额:
    $ 28.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Despite much advancement in materials, computation power, actuators, sensors, and design, robots drastically lag in their ability to match humans in dexterous manipulation. Studies that show success in robotic manipulation suffer from complex sensing schemes and extensive post processing steps because they utilize tactile sensors that are not capable of human-like high spatial resolution or contact force magnitude and direction detection. Artificial skin-like flexible tactile sensors that can resemble the tactile sensing capabilities of their biological analogue are bound to revolutionize robotics, providing unprecedented control and dexterity, and support the recent advancements in artificial intelligence and humanoid robotics. This work addresses the pressing need for skin-like distributed tactile sensors and proposes a novel tactile sensor of flexible construction, which can resolve dynamic contact forces with fingertip-like high spatial resolution. The proposed work is transformative in its ability to equip robotic manipulators with tactile feedback comparable to that of humans, paving the way to human-like dexterity in robotics. This innovative technology has the potential to be a significant step toward the realization of corobots living and working with humans. This project complements the educational activities in biomimetic engineering and entrepreneurial awareness, giving undergraduate and graduate students the opportunity to be involved in cutting-edge research and gain skills in innovative thinking and entrepreneurship. Educational outreach activities to introduce and promote engineering to K-12 students and underrepresented groups will be an integral part of this project. The goal of this work is to enable spatially resolve three-dimensional contact force imaging and provide skin-like touch sensing capabilities (namely, local three-dimensional dynamic force sensing) to robotic platforms and facilitate human-like dexterous manipulation in robotic manipulators. The PI will achieve this goal by fabricating a novel array-type tactile sensor comprising a fibrillar polymeric contact layer which amplifies contact forces at the integrated piezoresistive base sensing layer and a flexible substrate with integrated electrodes. Preliminary experiments have demonstrated composite piezoresistors with pressure sensitivity close to that of a human fingertip. The objectives of the proposed work are to (i) design a composite microfibrillar sensor array, based on piezoresistive sensing, which would be flexible, cheap, and durable; (ii) develop repeatable and scalable fabrication techniques; (iii) study the underlying physics for composite fiber sensing using micro-and-mesoscale characterization techniques; and (iv) study and demonstrate friction characterization, slip detection, and slip prevention using custom characterization tools. The long-term scientific goal is to understand and quantify the relationship between three dimensional spatio-temporal contact force images and manipulation to advance robotics as well as its medical and biological applications. If successful, this project, in addition to providing unprecedented control and dexterity in robots, will support the recent advancements in other important areas of robotics, for example in artificial intelligence and humanoid robotics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管在材料、计算能力、执行器、传感器和设计方面取得了很大进步,但机器人在灵巧操作方面与人类相比的能力却大大落后。研究表明,成功的机器人操作遭受复杂的传感方案和广泛的后处理步骤,因为他们利用触觉传感器,不能够像人类一样的高空间分辨率或接触力的大小和方向检测。人工皮肤般的柔性触觉传感器,可以类似于其生物模拟物的触觉传感能力,必将彻底改变机器人技术,提供前所未有的控制和灵活性,并支持人工智能和人形机器人技术的最新进展。这项工作解决了迫切需要的皮肤一样的分布式触觉传感器,并提出了一种新的触觉传感器的柔性结构,它可以解决动态接触力与指尖一样高的空间分辨率。这项拟议的工作是变革性的,它能够为机器人操纵器配备与人类相当的触觉反馈,为机器人技术中类似人类的灵活性铺平道路。这项创新技术有可能成为实现corobots与人类一起生活和工作的重要一步。该项目补充了仿生工程和创业意识的教育活动,使本科生和研究生有机会参与前沿研究,并获得创新思维和创业技能。向K-12学生和代表性不足的群体介绍和推广工程学的教育推广活动将是该项目的一个组成部分。 这项工作的目标是使空间分辨三维接触力成像,并提供类似皮肤的触摸传感能力(即局部三维动态力传感)的机器人平台,并促进机器人操作器中的类人灵巧操作。PI将通过制造一种新型阵列式触觉传感器来实现这一目标,该触觉传感器包括纤维状聚合物接触层和具有集成电极的柔性基板,该纤维状聚合物接触层放大集成压阻基底感测层处的接触力。初步实验已经证明,复合压敏电阻器的压力灵敏度接近人类指尖。本论文的目标是:(i)设计一种基于压阻传感的复合微纤维传感器阵列,该传感器阵列将是灵活的、廉价的和耐用的;(ii)开发可重复的和可扩展的制造技术;(iii)使用微尺度和中尺度表征技术研究复合纤维传感的基础物理;以及(iv)使用定制表征工具研究和演示摩擦表征、滑动检测和滑动预防。 长期的科学目标是理解和量化三维时空接触力图像和操作之间的关系,以推进机器人技术及其医学和生物学应用。如果成功的话,这个项目,除了提供前所未有的控制和灵活性的机器人,将支持在其他重要领域的机器人技术的最新进展,例如在人工智能和人形机器人。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Multidirectional Piezoelectric Vibration Energy Harvester With Direction-Dependent Dual Resonance
Using a conductive sphere as a probe to characterize the sensitivity of soft piezoresistive films
  • DOI:
    10.1002/app.50349
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    3
  • 作者:
    C. Green;J. Rogers;Robert Kovenburg;B. Aksak
  • 通讯作者:
    C. Green;J. Rogers;Robert Kovenburg;B. Aksak
The Relationship Between Incremental Changes in Orientation and Slip Speed Estimation Using the Fingerprint Effect
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Burak Aksak其他文献

Burak Aksak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Burak Aksak', 18)}}的其他基金

I-Corps: Engineered bio-inspired surface for passive flow control
I-Corps:用于被动流量控制的仿生工程表面
  • 批准号:
    1829311
  • 财政年份:
    2018
  • 资助金额:
    $ 28.77万
  • 项目类别:
    Standard Grant
SBIR Phase I: Manufacturing of Bio-Inspired Polymer Micro/Nano-Fiber Arrays as New Gripping Materials
SBIR 第一阶段:制造仿生聚合物微/纳米纤维阵列作为新型夹持材料
  • 批准号:
    1014183
  • 财政年份:
    2010
  • 资助金额:
    $ 28.77万
  • 项目类别:
    Standard Grant
STTR Phase I: Biologically Inspired Polymer Fiber Adhesives as Enhanced Gripping Materials
STTR 第一阶段:仿生聚合物纤维粘合剂作为增强抓握材料
  • 批准号:
    0930610
  • 财政年份:
    2009
  • 资助金额:
    $ 28.77万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: NSFGEO-NERC: Using population genetic models to resolve and predict dispersal kernels of marine larvae
合作研究:NSFGEO-NERC:利用群体遗传模型解析和预测海洋幼虫的扩散内核
  • 批准号:
    2334798
  • 财政年份:
    2024
  • 资助金额:
    $ 28.77万
  • 项目类别:
    Standard Grant
Efficient computational technologies to resolve the Timetree of Life: from ancient DNA to species-rich phylogenies
高效计算技术解析生命时间树:从古代 DNA 到物种丰富的系统发育
  • 批准号:
    BB/Y004132/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.77万
  • 项目类别:
    Research Grant
Collaborative Research: NSFGEO-NERC: Using population genetic models to resolve and predict dispersal kernels of marine larvae
合作研究:NSFGEO-NERC:利用群体遗传模型解析和预测海洋幼虫的扩散内核
  • 批准号:
    2334797
  • 财政年份:
    2024
  • 资助金额:
    $ 28.77万
  • 项目类别:
    Standard Grant
Efficient computational technologies to resolve the Timetree of Life: from ancient DNA to species-rich phylogenies
高效计算技术解析生命时间树:从古代 DNA 到物种丰富的系统发育
  • 批准号:
    BB/Y003624/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.77万
  • 项目类别:
    Research Grant
Efficient computational technologies to resolve the Timetree of Life: from ancient DNA to species-rich phylogenies
高效计算技术解析生命时间树:从古代 DNA 到物种丰富的系统发育
  • 批准号:
    BB/Y00339X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.77万
  • 项目类别:
    Research Grant
Collaborative Research: Laboratory and Modeling Studies to Resolve a Grand Challenge for Upper Atmospheric Science
合作研究:实验室和模型研究解决高层大气科学的巨大挑战
  • 批准号:
    2312192
  • 财政年份:
    2023
  • 资助金额:
    $ 28.77万
  • 项目类别:
    Standard Grant
Chemical Biology Strategies to Resolve Plasmodium Heat Shock Protein Function
解决疟原虫热休克蛋白功能的化学生物学策略
  • 批准号:
    10734886
  • 财政年份:
    2023
  • 资助金额:
    $ 28.77万
  • 项目类别:
Theoretical and observational research to resolve the bright-end excess problem of ultraviolet luminosity functions of very high redshift galaxies
解决极高红移星系紫外光度函数亮端过剩问题的理论和观测研究
  • 批准号:
    23H00131
  • 财政年份:
    2023
  • 资助金额:
    $ 28.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Development of a medical device to resolve benign esophageal stricture by heating and traction
开发通过加热和牵引解决良性食管狭窄的医疗设备
  • 批准号:
    23H03765
  • 财政年份:
    2023
  • 资助金额:
    $ 28.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Laboratory and Modeling Studies to Resolve a Grand Challenge for Upper Atmospheric Science
合作研究:实验室和模型研究解决高层大气科学的巨大挑战
  • 批准号:
    2312191
  • 财政年份:
    2023
  • 资助金额:
    $ 28.77万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了