Homotopy Theory of Foliations and Diffeomorphism Groups

叶状结构和微分同胚群的同伦理论

基本信息

  • 批准号:
    1810644
  • 负责人:
  • 金额:
    $ 11.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2021-03-31
  • 项目状态:
    已结题

项目摘要

Foliation theory is a field of mathematics, which is roughly 50 years old, whose object of study is certain decomposition of manifolds into path-connected subsets, called leaves. A foliation looks locally like a decomposition of the manifold as a union of parallel submanifolds of lower dimensions. Such geometric structures naturally arise in physics and geology. And in mathematics the depth and breadth of foliated objects made mathematicians use tools from many different branches of mathematics including differential geometry, homotopy theory, noncommutative geometry, ergodic theory and dynamical systems. The PI intends to use new tools from homotopy theory to investigate the relation between foliations and diffeomorphism groups.The existence and classification of foliations and the implication of such structures on the global topology of manifolds have been extensively studied in the past five decades. However, there are still many mysteries, perhaps the most important of which in the homotopy theory of foliation is the Haefliger conjecture. Haefliger asked whether all plane fields on a manifold whose dimensions are roughly less than the half of the dimension of the manifold are integrable up to homotopy. It was shown by Mather and Thurston that the homotopy theory of foliations is naturally related to the homological invariants of the diffeomorphism groups made discrete. But the group homologies of diffeomorphism groups as discrete groups tend to be very large and are poorly understood. On the other hand diffeomorphism group with the Whitney topology is better understood, in particular, Galatius and Randal-Williams' program developed new tools to study the classifying space of these groups with the Whitney topology. The PI's plan is to combine the new homotopy theoretical methods that stem from the evolving field of the moduli space of manifolds with the classical foliation theory to study homological invariants of diffeomorphism groups made discrete.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
叶理论是一个数学领域,大约有50年的历史,其研究对象是将流形分解成路径连通的子集,称为叶。一个叶理在局部上看起来像是流形的分解,作为一个低维平行子流形的并集。这种几何结构自然出现在物理学和地质学中。而在数学中,叶对象的深度和广度使得数学家们使用了许多不同数学分支的工具,包括微分几何、同伦理论、非交换几何、遍历理论和动力系统。PI打算使用同伦理论的新工具来研究叶理和复同态群之间的关系。叶理的存在性和分类以及这种结构对流形的整体拓扑的影响在过去的五十年里得到了广泛的研究。然而,仍然有许多谜团,其中最重要的可能是同伦理论的叶理是Haefliger猜想。Haefliger问是否所有平面领域的流形上的尺寸大致小于一半的维度的流形是可积的同伦。马瑟和瑟斯顿证明了叶理的同伦理论与离散化的同形群的同调不变量自然相关。 但是,作为离散群的单同态群的群同调往往非常大,并且很少被理解。另一方面,具有Whitney拓扑的类同态群得到了更好的理解,特别是Galatius和Randal-Williams的程序开发了新的工具来研究这些具有Whitney拓扑的群的分类空间。PI的计划是联合收割机的新同伦理论的方法,源于不断发展的领域的模空间的流形与经典的叶理理论,研究同调不变量的同形群离散。这一奖项反映了NSF的法定使命,并已被认为是值得支持,通过评估使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamical and cohomological obstructions to extending group actions
扩展群体行为的动力学和上同调障碍
  • DOI:
    10.1007/s00208-020-01989-4
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Mann, Kathryn;Nariman, Sam
  • 通讯作者:
    Nariman, Sam
A local to global argument on low dimensional manifolds
On the bordism group for group actions on the torus
关于圆环上群作用的边界群
  • DOI:
    10.5802/aif.3480
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mann, Kathryn;Nariman, Sam
  • 通讯作者:
    Nariman, Sam
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sam Nariman其他文献

Braid groups and discrete diffeomorphisms of the punctured disk
  • DOI:
    10.1007/s00209-017-1933-9
  • 发表时间:
    2017-10-16
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Sam Nariman
  • 通讯作者:
    Sam Nariman
On the moduli space of flat symplectic surface bundles
平辛面丛的模空间
Dynamical and topological obstructions to extending group actions
扩展群体行动的动力学和拓扑障碍
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kathryn Mann;Sam Nariman
  • 通讯作者:
    Sam Nariman
On flat manifold bundles and the connectivity of Haefliger's classifying spaces
关于平流形丛和 Haefliger 分类空间的连通性
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sam Nariman
  • 通讯作者:
    Sam Nariman
A New Interpretation of Dictatorship with Applications in Social Choice Theory
独裁的新解释及其在社会选择理论中的应用
  • DOI:
    10.2139/ssrn.2713921
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Akbarpour;Sam Nariman
  • 通讯作者:
    Sam Nariman

Sam Nariman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sam Nariman', 18)}}的其他基金

CAREER: New Directions in Foliation Theory and Diffeomorphism Groups
职业:叶状理论和微分同胚群的新方向
  • 批准号:
    2239106
  • 财政年份:
    2023
  • 资助金额:
    $ 11.93万
  • 项目类别:
    Continuing Grant
Homotopy Theory of Foliations and Diffeomorphism Groups
叶状结构和微分同胚群的同伦理论
  • 批准号:
    2113828
  • 财政年份:
    2021
  • 资助金额:
    $ 11.93万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Homotopy Theory of Foliations and Diffeomorphism Groups
叶状结构和微分同胚群的同伦理论
  • 批准号:
    2113828
  • 财政年份:
    2021
  • 资助金额:
    $ 11.93万
  • 项目类别:
    Standard Grant
CAREER: Singular Riemannian Foliations and Applications to Curvature and Invariant Theory
职业:奇异黎曼叶状结构及其在曲率和不变理论中的应用
  • 批准号:
    2042303
  • 财政年份:
    2021
  • 资助金额:
    $ 11.93万
  • 项目类别:
    Continuing Grant
Foliations, Invariant Theory, and Submanifolds
叶状结构、不变理论和子流形
  • 批准号:
    2005373
  • 财政年份:
    2020
  • 资助金额:
    $ 11.93万
  • 项目类别:
    Standard Grant
Exponential motivic homotopy theory, foliations and applications
指数本征同伦理论、叶状结构及应用
  • 批准号:
    405466915
  • 财政年份:
    2018
  • 资助金额:
    $ 11.93万
  • 项目类别:
    Priority Programmes
Invariant Theory of singular Riemannian foliations.
奇异黎曼叶状结构的不变理论。
  • 批准号:
    318342259
  • 财政年份:
    2016
  • 资助金额:
    $ 11.93万
  • 项目类别:
    Research Grants
Pluripotential Theory, Hulls and Foliations
多能理论、船体和叶状结构
  • 批准号:
    125787714
  • 财政年份:
    2009
  • 资助金额:
    $ 11.93万
  • 项目类别:
    Research Grants
Restricted Versions of the Hilbert 16th Problem and Related Topics in the Theory of Analytic Foliations
解析叶理理论中希尔伯特第十六问题的限制版本及相关主题
  • 批准号:
    0100404
  • 财政年份:
    2001
  • 资助金额:
    $ 11.93万
  • 项目类别:
    Standard Grant
Analysis of Power System Dynamic Mechanisms and Controllability Using The Theory Of Foliations
利用叶状结构理论分析电力系统动力机制及可控性
  • 批准号:
    9307149
  • 财政年份:
    1993
  • 资助金额:
    $ 11.93万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Differential Topology and Ergodic Theory of Foliations
数学科学:微分拓扑和叶状遍历理论
  • 批准号:
    8601976
  • 财政年份:
    1986
  • 资助金额:
    $ 11.93万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Differential Topology and Ergodic Theory of Foliations
数学科学:微分拓扑和叶状遍历理论
  • 批准号:
    8404128
  • 财政年份:
    1984
  • 资助金额:
    $ 11.93万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了