Optimal Nonparametric Estimation of High-Dimensional Functionals in Causal Inference

因果推理中高维泛函的最优非参数估计

基本信息

  • 批准号:
    1810979
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Causality is central to many of the most important questions in science and policy: Which cancer treatments are most effective for which patients? Would more strict gun laws result in fewer homicides? Causal inference is concerned with formulating such questions mathematically, exploring whether answers can be gleaned from data, and if so, determining how well and with what statistical methods. Classical methods in causal inference tend to aim at simple summary effects, such as how outcomes would change on average if a treatment were applied to an entire population versus not at all. However, with big data, investigators can ask more complicated questions, such as how treatment effects vary with complex covariate information, or how outcome densities would change with sequential treatments applied over many timepoints. In this project the PI will develop flexible statistical methods for answering such questions without imposing strong assumptions, and will study optimality, i.e., how well one can possibly answer such questions. The above questions can be framed as high-dimensional functional estimation problems. The classical approach here is to use strong parametric assumptions to reduce these problems to finite-dimensional ones. This allows for standard methods and a deep understanding of optimality, but when true parametric structure is unknown, incorrect assumptions can result in sizable bias and irrelevant efficiency bounds. In fact, little is known in the nonparametric case. Thus, the PI will develop novel nonparametric estimators of high-dimensional causal functionals, study their risk, provide confidence bands and inferential tools, and explore minimax lower bounds. All methods will be made available in R software. This proposal focuses on the foundational problems of (a) estimating counterfactual densities and (b) heterogeneous treatment effects, in three prominent domains of causal inference: (i) unconfounded point treatments, (ii) instrumental variables, and (iii) time-varying treatments. In addition, the PI will establish a general framework for bias-corrected estimation and inference for high-dimensional functionals.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
因果关系是科学和政策中许多最重要问题的核心:哪些癌症治疗方法对哪些患者最有效?更严格的枪支法律会导致更少的杀人案吗?因果推理关注的是用数学方法来表达这些问题,探索答案是否可以从数据中收集,如果可以,确定如何以及用什么统计方法。因果推理中的经典方法倾向于针对简单的汇总效应,例如,如果将治疗应用于整个人群,而不是根本不应用,结果平均会如何变化。然而,通过大数据,研究人员可以提出更复杂的问题,例如治疗效果如何随复杂的协变量信息而变化,或者在许多时间点上应用连续治疗时,结果密度将如何变化。在这个项目中,PI将开发灵活的统计方法来回答这些问题,而不强加强有力的假设,并将研究最优性,即,一个人能回答这样的问题有多好上述问题可以归结为高维函数估计问题。这里的经典方法是使用强参数假设,以减少这些问题的有限维的。这允许标准方法和对最优性的深入理解,但是当真正的参数结构未知时,不正确的假设可能导致相当大的偏差和不相关的效率界限。事实上,在非参数情况下知之甚少。因此,PI将开发新的高维因果函数的非参数估计,研究其风险,提供置信带和推理工具,并探索极大极小下界。所有方法都将在R软件中提供。这个建议的重点是(a)估计反事实密度和(B)异质性的治疗效果的基础问题,在因果推理的三个突出领域:(i)无混淆点治疗,(ii)工具变量,和(iii)随时间变化的治疗。此外,PI将建立一个偏差校正估计和推理的高维functionals.This奖项反映了NSF的法定使命的一般框架,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edward Kennedy其他文献

Heterogeneous interventional effects with multiple mediators: Semiparametric and nonparametric approaches
多种中介因素的异质干预效应:半参数和非参数方法
  • DOI:
    10.1515/jci-2022-0070
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Max Rubinstein;Zach Branson;Edward Kennedy
  • 通讯作者:
    Edward Kennedy
Correction: Incremental Propensity Score Effects for Criminology: An Application Assessing the Relationship Between Homelessness, Behavioral Health Problems, and Recidivism
  • DOI:
    10.1007/s10940-024-09598-z
  • 发表时间:
    2024-11-23
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Leah A. Jacobs;Alec McClean;Zach Branson;Edward Kennedy;Alex Fixler
  • 通讯作者:
    Alex Fixler
Original Abstracts from the 2024 European Meeting of ISMPP
2024 年 ISMPP 欧洲会议原始摘要
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Andy Shepherd;Amy Shaberman;Ann M Hepping;Catherine Richards Golini;Jonathan Patience;Tom Smith;Sophie Randall;Joanne Walker;Trishna Bharadia;Niall Harrison;Patricia Logullo;E. V. Zuuren;Amy Price;Ellen L. Hughes;Paul Blazey;Christopher C. Winchester;David Tovey;Keith Goldman;Amrit Pali;William T. Gattrell;Liz Southey;Rebecca Barber;Caroline Halford;Elena Mills;Avishek Pal;Sarah Thomas;Sarah Tucker;Kim Wager;David Gothard;Andrew Liew;Eleanor J. Raynsford;Anupama Kapadia;Aruna Meka;Raghuraj Puthige;Valerie Moss;Jon Hoggard;Brian Norman;William Dolben;Laura P erez;David Evans;Pablo Pons;Pierre Fichelson;Rachel Johnson;Eleanor Porteous;Matt Lewis;Joshua Quartey;Steven Duckett;Jennifer Rainer;Islay Steele;Julia King;Shelly Asiala;Michael Bennett;Lauren Smith;Stacey Reeber;Stephanie Springer;Emma;Alice Xue;N. Strangman;Alessandra Bittante;Petrina Stevens;Lee Wulund;Sarah Griffiths;Adeline Rosenberg;Bernard Kerr;Abigail Killen;Connie Lam;Edward Kennedy;Emmanuel Ogunnowo;James Godding;Monica Burgett;Sarah A. Hutchinson;Sam Kew;Salgo Merin;Ricki Elenjikamalil;Sonali Satam;Divya Narayan;Madhavi Patil;Sangita Patil;Vatsal Shah;R. Panigrahy;Sabrina de Courcy;Rachel Dodd;Kara Filbey;Abbie Newman;Emma Robinson;Ben Clarke
  • 通讯作者:
    Ben Clarke
Calendar of Meetings / Massachusetts Dental Society / Nevada State Dental Association / New Jersey State Dental Society / Ohio State Dental Society / Michigan State Dental Society / Board of Dental Examiners of State of Arizona / Board of Dental Examiners of California / Oklahoma State Board of Dental Examiners / North Dakota State Board of Dental Examiners / Pennsylvania State Dental Council and Examining Board / Chicago Dental Society’s Annual Meeting and Clinic / Dental Protective Association / The Better Dentistry Meeting / A Three Day Postgraduate School / Resolutions on the Death of Dr. Walker / Patents Relating to Dentistry / He Wrote as He Read
  • DOI:
    10.14219/jada.archive.1925.0298
  • 发表时间:
    1925-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Harold W. Alden;William H. Gilpatric;George A. Carr;R.S. Hopkins;F.K. Heazelton;Edward C. Mills;William R. Davis;Eugene McQuire;O.E. Jackson;L.M. Doss;W.E. Hocking;Alexander H. Reynolds;M.M. Printz;Hugo G. Fisher;J.G. Reid;D.M. Gallie;E.W. Elliot;E.M. Davies;Edward Kennedy;B.W. Weinberger
  • 通讯作者:
    B.W. Weinberger

Edward Kennedy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Edward Kennedy', 18)}}的其他基金

CAREER: Advances in Modern Causal Inference: High Dimensions, Heterogeneity, and Beyond
职业:现代因果推理的进展:高维度、异质性及其他
  • 批准号:
    2047444
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1606264
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Fellowship Award

相似海外基金

New Development of Nonparametric and Semiparametric Estimation Methods in Economics, Finance and Insurance
经济、金融和保险领域非参数和半参数估计方法的新进展
  • 批准号:
    23K01340
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Improvement of nonparametric inference based on kernel type estimation and resampling method, and its application
基于核类型估计和重采样方法的非参数推理改进及其应用
  • 批准号:
    22K11939
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonparametric estimation of joint tail distribution with application to flood risk assessment
联合尾部分布的非参数估计及其在洪水风险评估中的应用
  • 批准号:
    570052-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Nonparametric Estimation and Inference with Network Data
网络数据的非参数估计和推理
  • 批准号:
    2210561
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Nonparametric Estimation via Mixed Derivatives
通过混合导数的非参数估计
  • 批准号:
    2210504
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CAREER: New Paradigms of Estimation and Inference in Constrained Nonparametric Models
职业:约束非参数模型中估计和推理的新范式
  • 批准号:
    2143468
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Efficient nonparametric estimation of heterogeneous treatment effects in causal inference
因果推理中异质治疗效果的有效非参数估计
  • 批准号:
    10297407
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
Efficient nonparametric estimation of heterogeneous treatment effects in causal inference
因果推理中异质治疗效果的有效非参数估计
  • 批准号:
    10466912
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
Efficient nonparametric estimation of heterogeneous treatment effects in causal inference
因果推理中异质治疗效果的有效非参数估计
  • 批准号:
    10610947
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
Efficient Estimation of Treatment Effects via Nonparametric Machine Learning
通过非参数机器学习有效估计治疗效果
  • 批准号:
    2014221
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了