Large Scale Geometry of Scalar Curvature and Minimal Surfaces

标量曲率和最小曲面的大尺度几何

基本信息

  • 批准号:
    1811059
  • 负责人:
  • 金额:
    $ 17.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2020-03-31
  • 项目状态:
    已结题

项目摘要

Geometers seek to describe how an object bends and study objects that curve in a specific way. This study of curvature is important in all domains of science and engineering. For example, the theory of general relativity posits that gravity curves space and time in a mathematically precise manner, while in materials science, the meeting points between crystal structures are modeled by (a rather different notion of) curvature. This project is concerned with the study of a particular measure of bending called scalar curvature. Scalar curvature is one of the simplest measures of bending, but due to this simplicity scalar curvature can contain only a limited amount of information. Hence, we must study scalar curvature through highly indirect means. One way to explore scalar curvature is in relation to the isoperimetric problem: in a given space, how can we enclose the largest amount of volume with the smallest perimeter? This is one of the oldest mathematical questions, but its link to scalar curvature is only recently beginning to be understood. The PI's project will continue the study of scalar curvature as it affects the large-scale behavior of area and volume, with particular emphasis on the relationship between such topics and problems related to general relativity. In addition to this research, this project will also support the PI's continued efforts to promote student learning and training through seminar organization, conferences, and summer schools, as well as expository articles and notes. A major component of the research plan is the continued study of the link between large-scale variational problems and scalar curvature, motivated by geometric and physical considerations such as the Penrose inequality and static uniqueness questions from general relativity. To this end, the PI plans to continue his investigation of global uniqueness questions related to scalar curvature and the isoperimetric problem. Recently, several such problems have been understood in three dimensions, using a combination of powerful tools from geometric analysis (many of which are limited to three dimensions). One portion of the research will consist of investigating higher dimensional analogues of these results, which will necessitate the development of a wide array of new techniques. The ideas developed in these aforementioned global uniqueness works have also led to other (a priori unrelated) topics that the PI will investigate. For example, determining the validity of the Minkowski inequality for non-convex surfaces (possibly with an additional bending term) is related to the uniqueness question for large stable constant mean curvature surfaces in asymptotically flat manifolds. Similarly, an invariant related to the least area in the homology class of a torus for certain Riemannian three-manifolds with non-negative scalar curvature is related to the rigidity of area-minimizing cylinders in three-manifolds of non-negative scalar curvature. In a different (but related) direction, this project will also include investigation of the relationship between the geometry and topology of minimal surfaces, including the study of surfaces with simple topology or small index.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
几何学家试图描述一个物体如何弯曲,并研究以特定方式弯曲的物体。曲率的研究在科学和工程的所有领域都是重要的。例如,广义相对论假定重力以数学上精确的方式弯曲空间和时间,而在材料科学中,晶体结构之间的交汇点是用曲率(一种相当不同的概念)来建模的。这个项目是关于一种叫做标量曲率的弯曲的特殊度量的研究。标量曲率是最简单的弯曲度量之一,但由于这种简单性,标量曲率只能包含有限的信息量。因此,我们必须通过高度间接的方法来研究标量曲率。探索标量曲率的一种方法是与等周问题有关:在给定的空间中,我们如何用最小的周长包围最大的体积?这是最古老的数学问题之一,但它与标量曲率的联系直到最近才开始被理解。PI的项目将继续研究标量曲率,因为它影响面积和体积的大尺度行为,特别强调这些主题与广义相对论相关问题之间的关系。除了这项研究之外,该项目还将通过组织研讨会、会议、暑期学校以及说明性文章和笔记,支持PI继续努力促进学生的学习和培训。研究计划的一个主要组成部分是继续研究大尺度变分问题和标量曲率之间的联系,受到几何和物理考虑的激励,如彭罗斯不等式和广义相对论中的静态唯一性问题。为此,PI计划继续研究与标量曲率和等周问题相关的全局唯一性问题。最近,一些这样的问题已经在三维空间中得到了理解,使用了来自几何分析的强大工具的组合(其中许多工具仅限于三维空间)。研究的一部分将包括研究这些结果的高维类似物,这将需要开发一系列广泛的新技术。上述全球独特性工作中发展的思想也导致了PI将调查的其他(先验无关的)主题。例如,确定Minkowski不等式对非凸曲面(可能带有额外的弯曲项)的有效性与渐近平坦流形中大稳定常平均曲率曲面的唯一性问题有关。同样,对于某些非负标量曲率黎曼三流形,一个与环面同调类中最小面积有关的不变量与非负标量曲率三流形中最小面积柱体的刚度有关。在一个不同的(但相关的)方向上,该项目还将包括研究最小曲面的几何和拓扑之间的关系,包括研究具有简单拓扑或小指数的曲面。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Curvature estimates and sheeting theorems for weakly stable CMC hypersurfaces
  • DOI:
    10.1016/j.aim.2019.05.023
  • 发表时间:
    2018-02
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    C. Bellettini;Otis Chodosh;Neshan Wickramasekera
  • 通讯作者:
    C. Bellettini;Otis Chodosh;Neshan Wickramasekera
Minimal Hypersurfaces with Arbitrarily Large Area
具有任意大面积的最小超曲面
On far-outlying constant mean curvature spheres in asymptotically flat Riemannian 3-manifolds
Minimal surfaces and the Allen–Cahn equation on 3-manifolds: index, multiplicity, and curvature estimates
  • DOI:
    10.4007/annals.2020.191.1.4
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Otis Chodosh;Christos Mantoulidis
  • 通讯作者:
    Otis Chodosh;Christos Mantoulidis
Asymptotically flat three-manifolds contain minimal planes
渐近平坦三流形包含最小平面
  • DOI:
    10.1016/j.aim.2018.08.010
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Chodosh, Otis;Ketover, Daniel
  • 通讯作者:
    Ketover, Daniel
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Otis Chodosh其他文献

Optimal Transport and Ricci Curvature: Wasserstein Space Over the Interval
  • DOI:
  • 发表时间:
    2011-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Otis Chodosh
  • 通讯作者:
    Otis Chodosh
Stationary axisymmetric black holes with matter
具有物质的静止轴对称黑洞
Expanding Ricci solitons asymptotic to cones
Volume growth of 3-manifolds with scalar curvature lower bounds
具有标量曲率下界的 3 流形的体积增长
  • DOI:
    10.1007/s00039-022-00598-4
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Otis Chodosh;C. Li;Douglas Stryker
  • 通讯作者:
    Douglas Stryker
STABLE MINIMAL SURFACES AND POSITIVE SCALAR CURVATURE LECTURE NOTES FOR MATH 258, STANFORD, FALL 2021
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Otis Chodosh
  • 通讯作者:
    Otis Chodosh

Otis Chodosh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Otis Chodosh', 18)}}的其他基金

Stability in Geometric Variational Problems
几何变分问题的稳定性
  • 批准号:
    2304432
  • 财政年份:
    2023
  • 资助金额:
    $ 17.28万
  • 项目类别:
    Standard Grant
Large Scale Geometry of Scalar Curvature and Minimal Surfaces
标量曲率和最小曲面的大尺度几何
  • 批准号:
    2016403
  • 财政年份:
    2019
  • 资助金额:
    $ 17.28万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于热量传递的传统固态发酵过程缩小(Scale-down)机理及调控
  • 批准号:
    22108101
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于Multi-Scale模型的轴流血泵瞬变流及空化机理研究
  • 批准号:
    31600794
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
针对Scale-Free网络的紧凑路由研究
  • 批准号:
    60673168
  • 批准年份:
    2006
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
  • 批准号:
    2340341
  • 财政年份:
    2024
  • 资助金额:
    $ 17.28万
  • 项目类别:
    Continuing Grant
Exploring Large-Scale Geometry via Local and Nonlocal Potential Theory
通过局部和非局部势理论探索大尺度几何
  • 批准号:
    2348748
  • 财政年份:
    2024
  • 资助金额:
    $ 17.28万
  • 项目类别:
    Standard Grant
A New Pipeline for Detailed Large Scale Geometry Acquisition and Analysis
用于详细的大规模几何采集和分析的新流程
  • 批准号:
    RGPIN-2021-03477
  • 财政年份:
    2022
  • 资助金额:
    $ 17.28万
  • 项目类别:
    Discovery Grants Program - Individual
A New Pipeline for Detailed Large Scale Geometry Acquisition and Analysis
用于详细的大规模几何采集和分析的新流程
  • 批准号:
    RGPIN-2021-03477
  • 财政年份:
    2021
  • 资助金额:
    $ 17.28万
  • 项目类别:
    Discovery Grants Program - Individual
Large Scale Geometry in Functional Analysis
泛函分析中的大尺度几何
  • 批准号:
    2054860
  • 财政年份:
    2021
  • 资助金额:
    $ 17.28万
  • 项目类别:
    Standard Grant
Large Scale Geometry of Scalar Curvature and Minimal Surfaces
标量曲率和最小曲面的大尺度几何
  • 批准号:
    2016403
  • 财政年份:
    2019
  • 资助金额:
    $ 17.28万
  • 项目类别:
    Continuing Grant
Large scale geometry
大尺度几何
  • 批准号:
    508907-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 17.28万
  • 项目类别:
    University Undergraduate Student Research Awards
Large scale geometry of Polish groups
波兰群体的大尺度几何结构
  • 批准号:
    1464974
  • 财政年份:
    2015
  • 资助金额:
    $ 17.28万
  • 项目类别:
    Continuing Grant
Design of Efficient Saddle Point Algorithms for Large-scale/Complex Geometry Convex Optimization
大规模/复杂几何凸优化的高效鞍点算法设计
  • 批准号:
    1232623
  • 财政年份:
    2012
  • 资助金额:
    $ 17.28万
  • 项目类别:
    Standard Grant
NeTS: Small: Large Scale Sensor Network Routing using Conformal Geometry
NeTS:小型:使用共形几何的大规模传感器网络路由
  • 批准号:
    1016829
  • 财政年份:
    2010
  • 资助金额:
    $ 17.28万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了