Research in Geometric and Quantitative Topology
几何与定量拓扑研究
基本信息
- 批准号:1811071
- 负责人:
- 金额:$ 25.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Topology is usually thought of as a qualitative form of geometry. This flexibility is important for the role it plays in other areas in being able to deal with somewhat noisy or imprecise data, and reason rigorously about it. For many purposes, however, one wants to know how large or complex topological constructions are, and how stable solutions are to perturbations. This requires, technically, that one studies not just nonlinear functions from one space to another, but also spaces that bound measurements (such as the size of derivatives) on the functions. This mixed analytic topological study will be at the core of the project, with applications to geometric complexity, to spaces with singularities, which benefit from such study, but also require additional geometric and algebraic tools. Application to problems of numerical computation with natural resource bounds is anticipatedIn more detail, this project will study the complexity measured in terms of Lipschitz constants and bi-Lipschitz constants of homotopies, embeddings, immersions and (volumes for) cobordisms in smooth and PL settings. In some sense this should have the same relation to usual geometric topology as theoretical computer science has to logic. Indeed, using undecidability results, one can prove lower complexity bounds (as in Nabutovsky's ICM talk), but much homotopy theory, especially stable homotopy theory are decidable, but not effectively so (following Brown). The new information can be thought of as providing geometric information about function spaces of Lipschitz maps, showing that they have some bounds on diameter that are quite striking in comparison to the much larger estimates (that underly approximation theory, and some learning theory) for their volumes (also known as entropy, or covering numbers). Besides the intrinsic interest in these questions, they also bear on variational problems and perhaps on computation (as in, for example, the Blum-Shub-Smale model). Earlier variants of these quantitative concerns have already arisen in the study of square integrable cohomology and controlled (and bounded) topology. These theories will continue to be studied, hopefully revealing more subtle refinements of the Borel/Baum-Connes conjectures in special cases (such as virtually solvable groups) and applications to understanding group actions on aspherical manifolds. Interestingly, although there is currently no known quantitative bound at all on the number of embeddings of one manifold in another in codimension at least three, finiteness is known (for any Bi-Lipschitz bound), there is a natural strategy combining controlled topology with new information about function spaces to give, conjecturally, sharp estimates for these finite numbers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
拓扑学通常被认为是几何学的一种定性形式。这种灵活性对于它在其他领域中的作用是很重要的,因为它能够处理有些嘈杂或不精确的数据,并对其进行严格的推理。然而,对于许多目的,人们想要知道拓扑结构有多大或复杂,以及扰动的解有多稳定。 从技术上讲,这要求人们不仅要研究从一个空间到另一个空间的非线性函数,还要研究约束函数的测量(例如导数的大小)的空间。 这种混合的解析拓扑研究将是该项目的核心,应用于几何复杂性,奇异空间,从这种研究中受益,但也需要额外的几何和代数工具。本计画将研究光滑与PL设定下同伦、嵌入、浸入与协边的Lipschitz常数与双Lipschitz常数之复杂性。 在某种意义上,这应该与通常的几何拓扑学有着相同的关系,就像理论计算机科学与逻辑学的关系一样。事实上,使用不可判定性的结果,人们可以证明较低的复杂性界限(如Nabutovsky的ICM演讲),但许多同伦理论,特别是稳定同伦理论是可判定的,但不是有效的(跟随布朗)。新的信息可以被认为是提供了关于Lipschitz映射的函数空间的几何信息,表明它们有一些直径上的界限,与它们的体积(也称为熵或覆盖数)的更大估计(作为近似理论和一些学习理论的基础)相比,这些界限非常引人注目。 除了对这些问题的内在兴趣之外,它们还涉及变分问题,也许还涉及计算(例如Blum-Shub-Smale模型)。 这些定量问题的早期变体已经出现在平方可积上同调和控制(和有界)拓扑的研究中。 这些理论将继续被研究,希望能揭示在特殊情况下(如虚拟可解群)的Borel/Baum-Connes拓扑的更微妙的改进,以及理解非球面流形上的群作用的应用。 有趣的是,虽然目前还没有一个已知的数量限制,在一个流形嵌入另一个流形的余维至少为3,有限性是已知的(对于任何Bi-Lipschitz界),有一种自然的策略,将控制拓扑与关于函数空间的新信息相结合,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Interpolation, the Rudimentary Geometry of Spaces of Lipschitz Functions, and Geometric Complexity
插值、Lipschitz 函数空间的基本几何和几何复杂性
- DOI:10.1007/s10208-019-09416-0
- 发表时间:2020
- 期刊:
- 影响因子:3
- 作者:Weinberger, S.
- 通讯作者:Weinberger, S.
An infinite-dimensional phenomenon in finite-dimensional metric topology
有限维度量拓扑中的无限维现象
- DOI:10.4310/cjm.2020.v8.n1.a2
- 发表时间:2020
- 期刊:
- 影响因子:1.6
- 作者:Dranishnikov, Alexander N.;Ferry, Steven C.;Weinberger, Shmuel
- 通讯作者:Weinberger, Shmuel
Quantitative nullhomotopy and rational homotopy type
定量零同伦型和有理同伦型
- DOI:10.1007/s00039-018-0450-2
- 发表时间:2018
- 期刊:
- 影响因子:2.2
- 作者:Chambers, Gregory R.;Manin, Fedor;Weinberger, Shmuel
- 通讯作者:Weinberger, Shmuel
Convergence of the reach for a sequence of Gaussian-embedded manifolds
- DOI:10.1007/s00440-017-0801-1
- 发表时间:2015-03
- 期刊:
- 影响因子:2
- 作者:R. Adler;Sunder Ram Krishnan;Jonathan E. Taylor;S. Weinberger
- 通讯作者:R. Adler;Sunder Ram Krishnan;Jonathan E. Taylor;S. Weinberger
Integral and rational mapping classes
积分和有理映射类
- DOI:10.1215/00127094-2020-0012
- 发表时间:2020
- 期刊:
- 影响因子:2.5
- 作者:Manin, Fedor;Weinberger, Shmuel
- 通讯作者:Weinberger, Shmuel
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shmuel Weinberger其他文献
Bruce Williams
- DOI:
10.1007/s10711-010-9510-y - 发表时间:
2010-06-08 - 期刊:
- 影响因子:0.500
- 作者:
Bill Dwyer;John Klein;Shmuel Weinberger - 通讯作者:
Shmuel Weinberger
The Fractal Nature of Riem/Diff I
- DOI:
10.1023/a:1026358815492 - 发表时间:
2003-01-01 - 期刊:
- 影响因子:0.500
- 作者:
Alexander Nabutovsky;Shmuel Weinberger - 通讯作者:
Shmuel Weinberger
Correction to: Parametrized topological complexity of collision‑free motion planning in the plane
- DOI:
10.1007/s10472-022-09821-2 - 发表时间:
2022-12-01 - 期刊:
- 影响因子:1.000
- 作者:
Daniel C. Cohen;Michael Farber;Shmuel Weinberger - 通讯作者:
Shmuel Weinberger
Rationality ofρ-invariants
- DOI:
10.1007/bf02621596 - 发表时间:
1996-09-01 - 期刊:
- 影响因子:1.000
- 作者:
Shmuel Weinberger - 通讯作者:
Shmuel Weinberger
CLASSES TOPOLOGIQUES CARACTERISTIQUES POUR LES ACTIONS DE GROUPES SUR LES ESPACES SINGULIERS
奇异空间组动作的拓扑特征类
- DOI:
- 发表时间:
1991 - 期刊:
- 影响因子:0
- 作者:
Sylvain E. Cappell;J. Shaneson;Shmuel Weinberger - 通讯作者:
Shmuel Weinberger
Shmuel Weinberger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shmuel Weinberger', 18)}}的其他基金
Quantitative Topology and Embedding Theory
定量拓扑和嵌入理论
- 批准号:
2105451 - 财政年份:2021
- 资助金额:
$ 25.64万 - 项目类别:
Continuing Grant
DMS-EPSRC: Topology of Automated Motion Planning
DMS-EPSRC:自动运动规划拓扑
- 批准号:
2105553 - 财政年份:2021
- 资助金额:
$ 25.64万 - 项目类别:
Standard Grant
Problems in Geometric, Algebraic and Quantitative Topology
几何、代数和定量拓扑问题
- 批准号:
1510178 - 财政年份:2015
- 资助金额:
$ 25.64万 - 项目类别:
Continuing Grant
2014 MIDWEST REPRESENTATION THEORY CONFERENCE, September 5-7, 2014
2014年中西部代表理论会议,2014年9月5-7日
- 批准号:
1431425 - 财政年份:2014
- 资助金额:
$ 25.64万 - 项目类别:
Standard Grant
Problems in Geometric and Quantitative Topology
几何和定量拓扑问题
- 批准号:
1105657 - 财政年份:2011
- 资助金额:
$ 25.64万 - 项目类别:
Continuing Grant
Function Theory on Symplectic Manifolds
辛流形的函数论
- 批准号:
1006610 - 财政年份:2010
- 资助金额:
$ 25.64万 - 项目类别:
Continuing Grant
SGER: The Algebraic Topology of Random Fields and its Applications
SGER:随机场的代数拓扑及其应用
- 批准号:
0852227 - 财政年份:2008
- 资助金额:
$ 25.64万 - 项目类别:
Standard Grant
Collaborative Research: Geometric and Analytic Properties of Discrete Groups--A Focused Research Group on the Novikov Conjecture and the Baum-Connes Conjecture
协作研究:离散群的几何性质和解析性质--诺维科夫猜想和鲍姆-康纳斯猜想重点研究组
- 批准号:
0073812 - 财政年份:2000
- 资助金额:
$ 25.64万 - 项目类别:
Standard Grant
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Investigation of the quantitative intracranial aneurysm wall enhancement and geometric features associated with aneurysm volume growth
颅内动脉瘤壁定量增强和与动脉瘤体积生长相关的几何特征的研究
- 批准号:
10415665 - 财政年份:2022
- 资助金额:
$ 25.64万 - 项目类别:
Quantitative Homotopy Theory and Geometric Inequalities
定量同伦理论和几何不等式
- 批准号:
RGPIN-2018-04523 - 财政年份:2022
- 资助金额:
$ 25.64万 - 项目类别:
Discovery Grants Program - Individual
Investigation of the quantitative intracranial aneurysm wall enhancement and geometric features associated with aneurysm volume growth
颅内动脉瘤壁定量增强和与动脉瘤体积生长相关的几何特征的研究
- 批准号:
10684949 - 财政年份:2022
- 资助金额:
$ 25.64万 - 项目类别:
CAREER: Fractional Partial Differential Equations, Harmonic Analysis, and Their Applications in the Geometric Calculus of Variations and Quantitative Topology
职业:分数阶偏微分方程、调和分析及其在变分几何微积分和定量拓扑中的应用
- 批准号:
2044898 - 财政年份:2021
- 资助金额:
$ 25.64万 - 项目类别:
Continuing Grant
Quantitative Homotopy Theory and Geometric Inequalities
定量同伦理论和几何不等式
- 批准号:
RGPIN-2018-04523 - 财政年份:2021
- 资助金额:
$ 25.64万 - 项目类别:
Discovery Grants Program - Individual
Quantitative Homotopy Theory and Geometric Inequalities
定量同伦理论和几何不等式
- 批准号:
RGPIN-2018-04523 - 财政年份:2020
- 资助金额:
$ 25.64万 - 项目类别:
Discovery Grants Program - Individual
Quantitative Homotopy Theory and Geometric Inequalities
定量同伦理论和几何不等式
- 批准号:
RGPIN-2018-04523 - 财政年份:2019
- 资助金额:
$ 25.64万 - 项目类别:
Discovery Grants Program - Individual
Quantitative Homotopy Theory and Geometric Inequalities
定量同伦理论和几何不等式
- 批准号:
RGPIN-2018-04523 - 财政年份:2018
- 资助金额:
$ 25.64万 - 项目类别:
Discovery Grants Program - Individual
Length of Geodesic Loops and Distortion of Knots: Quantitative Aspects of Geometric and Topological Structures
测地线环的长度和结的变形:几何和拓扑结构的定量方面
- 批准号:
491689-2015 - 财政年份:2017
- 资助金额:
$ 25.64万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Quantitative Homotopy Theory and Geometric Inequalities
定量同伦理论和几何不等式
- 批准号:
217655-2013 - 财政年份:2017
- 资助金额:
$ 25.64万 - 项目类别:
Discovery Grants Program - Individual