Directions in Quantitative Topology
定量拓扑方向
基本信息
- 批准号:0504721
- 负责人:
- 金额:$ 29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-08-01 至 2009-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Weinberger plans to develop both quantitative versions of known theorems of algebraic and geometric topology, extending the basic ideas of controlled topology into directions of both more and less smoothness. In part, this interacts with logic and computer science, as in the analysis of Dehn functions, and applications of Kolmogorov complexity arguments to variational problems, but the goal is to get more realistic upper and lower bounds on specific (solvable) topological problems. A subsidiary task is to understand the "information based complexity" of geometric problems, and understand the rates of growth of various sets arising in classification problems via the philosophy of the Goodwillie calculus. The motivation for this comes from a number of directions, both applied and theoretical. In applications of topology to experimental sciences, one rarely has as explicit space to study: one has large data sets, and the investigator must infer an underlying space. The features that often arise as hypotheses in mathematical theorems cannot simply be seen: they must be detected. One problem to be studied is how to determine, say, the dimension of such an underlying space. After that come problems of implementing software and understanding how much data one needs to make reliable estimates. Another sort of problem comes from the existence of singularities in many equations of applied mathematics and geometry. As topology usually confines itself to the study of continuous maps, the implication of discontinuities of various sorts could potentially be of use. Finally, in many problems of pure geometry, the detailed structure of solutions which have only been proved to exist, but which have never been "seen" would be of great value. Reproving their existence with quantitative estimates should lead to a better understanding of their nature.
Weinberger计划开发已知代数和几何拓扑定理的定量版本,将控制拓扑的基本思想扩展到更多和更少平滑的方向。在某种程度上,这与逻辑和计算机科学相互作用,如在Dehn函数的分析中,以及Kolmogorov复杂性参数在变分问题中的应用,但目标是在特定(可解)拓扑问题上获得更现实的上限和下界。辅助任务是理解几何问题的“基于信息的复杂性”,并通过古德威利微积分的哲学理解分类问题中出现的各种集合的增长速度。这样做的动机来自许多方向,包括应用和理论。在拓扑学在实验科学中的应用中,人们很少有明确的空间来研究:人们有大量的数据集,研究者必须推断出一个潜在的空间。在数学定理中经常作为假设出现的特征不能简单地看到:它们必须被探测到。需要研究的一个问题是如何确定,比如说,这样一个底层空间的维度。接下来的问题是实现软件和理解需要多少数据才能做出可靠的估计。另一类问题来自于许多应用数学和几何方程中奇点的存在。由于拓扑学通常局限于对连续映射的研究,因此各种不连续性的含义可能会有潜在的用途。最后,在许多纯几何问题中,只被证明存在但从未被“看到”的解的详细结构将是很有价值的。用定量估计来证明它们的存在,应该能使我们更好地了解它们的性质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shmuel Weinberger其他文献
Bruce Williams
- DOI:
10.1007/s10711-010-9510-y - 发表时间:
2010-06-08 - 期刊:
- 影响因子:0.500
- 作者:
Bill Dwyer;John Klein;Shmuel Weinberger - 通讯作者:
Shmuel Weinberger
The Fractal Nature of Riem/Diff I
- DOI:
10.1023/a:1026358815492 - 发表时间:
2003-01-01 - 期刊:
- 影响因子:0.500
- 作者:
Alexander Nabutovsky;Shmuel Weinberger - 通讯作者:
Shmuel Weinberger
Correction to: Parametrized topological complexity of collision‑free motion planning in the plane
- DOI:
10.1007/s10472-022-09821-2 - 发表时间:
2022-12-01 - 期刊:
- 影响因子:1.000
- 作者:
Daniel C. Cohen;Michael Farber;Shmuel Weinberger - 通讯作者:
Shmuel Weinberger
Rationality ofρ-invariants
- DOI:
10.1007/bf02621596 - 发表时间:
1996-09-01 - 期刊:
- 影响因子:1.000
- 作者:
Shmuel Weinberger - 通讯作者:
Shmuel Weinberger
CLASSES TOPOLOGIQUES CARACTERISTIQUES POUR LES ACTIONS DE GROUPES SUR LES ESPACES SINGULIERS
奇异空间组动作的拓扑特征类
- DOI:
- 发表时间:
1991 - 期刊:
- 影响因子:0
- 作者:
Sylvain E. Cappell;J. Shaneson;Shmuel Weinberger - 通讯作者:
Shmuel Weinberger
Shmuel Weinberger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shmuel Weinberger', 18)}}的其他基金
Quantitative Topology and Embedding Theory
定量拓扑和嵌入理论
- 批准号:
2105451 - 财政年份:2021
- 资助金额:
$ 29万 - 项目类别:
Continuing Grant
DMS-EPSRC: Topology of Automated Motion Planning
DMS-EPSRC:自动运动规划拓扑
- 批准号:
2105553 - 财政年份:2021
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
Research in Geometric and Quantitative Topology
几何与定量拓扑研究
- 批准号:
1811071 - 财政年份:2018
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
Problems in Geometric, Algebraic and Quantitative Topology
几何、代数和定量拓扑问题
- 批准号:
1510178 - 财政年份:2015
- 资助金额:
$ 29万 - 项目类别:
Continuing Grant
2014 MIDWEST REPRESENTATION THEORY CONFERENCE, September 5-7, 2014
2014年中西部代表理论会议,2014年9月5-7日
- 批准号:
1431425 - 财政年份:2014
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
Problems in Geometric and Quantitative Topology
几何和定量拓扑问题
- 批准号:
1105657 - 财政年份:2011
- 资助金额:
$ 29万 - 项目类别:
Continuing Grant
SGER: The Algebraic Topology of Random Fields and its Applications
SGER:随机场的代数拓扑及其应用
- 批准号:
0852227 - 财政年份:2008
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
Collaborative Research: Geometric and Analytic Properties of Discrete Groups--A Focused Research Group on the Novikov Conjecture and the Baum-Connes Conjecture
协作研究:离散群的几何性质和解析性质--诺维科夫猜想和鲍姆-康纳斯猜想重点研究组
- 批准号:
0073812 - 财政年份:2000
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
相似海外基金
Minimal surfaces and quantitative topology of the space of cycles
循环空间的最小曲面和定量拓扑
- 批准号:
RGPIN-2019-06912 - 财政年份:2022
- 资助金额:
$ 29万 - 项目类别:
Discovery Grants Program - Individual
Quantitative Topology and Embedding Theory
定量拓扑和嵌入理论
- 批准号:
2105451 - 财政年份:2021
- 资助金额:
$ 29万 - 项目类别:
Continuing Grant
CAREER: Fractional Partial Differential Equations, Harmonic Analysis, and Their Applications in the Geometric Calculus of Variations and Quantitative Topology
职业:分数阶偏微分方程、调和分析及其在变分几何微积分和定量拓扑中的应用
- 批准号:
2044898 - 财政年份:2021
- 资助金额:
$ 29万 - 项目类别:
Continuing Grant
Minimal surfaces and quantitative topology of the space of cycles
循环空间的最小曲面和定量拓扑
- 批准号:
RGPIN-2019-06912 - 财政年份:2021
- 资助金额:
$ 29万 - 项目类别:
Discovery Grants Program - Individual
Minimal surfaces and quantitative topology of the space of cycles
循环空间的最小曲面和定量拓扑
- 批准号:
RGPIN-2019-06912 - 财政年份:2020
- 资助金额:
$ 29万 - 项目类别:
Discovery Grants Program - Individual
Minimal surfaces and quantitative topology of the space of cycles
循环空间的最小曲面和定量拓扑
- 批准号:
RGPAS-2019-00085 - 财政年份:2020
- 资助金额:
$ 29万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Minimal surfaces and quantitative topology of the space of cycles
循环空间的最小曲面和定量拓扑
- 批准号:
RGPAS-2019-00085 - 财政年份:2019
- 资助金额:
$ 29万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Quantitative, Computational, and Stochastic Aspects of Topology
拓扑的定量、计算和随机方面
- 批准号:
1906516 - 财政年份:2019
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
Minimal surfaces and quantitative topology of the space of cycles
循环空间的最小曲面和定量拓扑
- 批准号:
RGPIN-2019-06912 - 财政年份:2019
- 资助金额:
$ 29万 - 项目类别:
Discovery Grants Program - Individual
Quantitative, Computational, and Stochastic Aspects of Topology
拓扑的定量、计算和随机方面
- 批准号:
2001042 - 财政年份:2019
- 资助金额:
$ 29万 - 项目类别:
Standard Grant