Function Theory on Symplectic Manifolds

辛流形的函数论

基本信息

  • 批准号:
    1006610
  • 负责人:
  • 金额:
    $ 32.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-15 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

AbstractAward: DMS-1006610Principal Investigator: Leonid PolterovichThe proposed research belongs to symplectic geometry and topology, a rapidly developing field of mathematics which originally appeared as a geometric tool for problems of classical mechanics. The "symplectic revolution" of the 1980s gave rise to the discovery of surprising rigidity phenomena involving symplectic manifolds, their subsets and diffeomorphisms. A number of recent advances show that there is yet another manifestation of symplectic rigidity, taking place in function spaces associated to a symplectic manifold. These spaces exhibit unexpected properties and interesting structures, giving rise to an alternative intuition and new tools in symplectic topology, and providing a motivation to study the function theory on symplectic manifolds. Development of this new theory and its applications is the main objective of the proposed research. We focus on the following topics. First, we study robustness of the Poisson bracket. The Poisson bracket is a basic operation which involves a pair of functions and is defined by their derivatives. Certain characteristics of the Poisson bracket exhibit surprising robustness properties with respect to small perturbations in the uniform norm, even though such perturbations can dramatically change the derivatives. This phenomenon appears to be closely related to Hofer's geometry on the group of symplectic diffeomorphisms. Second, we deal with various aspects of the theory of symplectic quasi-states. Consider the space of functions on a symplectic manifold. A symplectic quasi-state is a monotone functional on this space which is linear on every Poisson-commutative subalgebra, but not necessarily on the whole space. The origins of this notion go back to foundations of quantum mechanics. Non-linear quasi-states on higher-dimensional manifolds are provided by Floer theory, the cornerstone of modern symplectic topology. Quasi-states serve as a useful tool for a number of problems in symplectic topology such as symplectic intersections and Lagrangian knots. Finally, we unify both topics and explore interrelations between symplectic quasi-states and Poisson brackets.Symplectic topology fruitfully interacts with several areas of science, which have a significant impact on society through their applications to technology. One of these areas is Hamiltonian dynamics, a mathematical discipline providing efficient tools for modeling a variety of fundamental physical and technological processes such as orbital motion of satellites, propagation of light in optical fibers and motion of charged particles through accelerators. Another one is quantum theory, a branch of physics which studies behavior of matter on microscopic scales, and whose potential applications reach as far as cryptography and computer technology. Development of function theory on symplectic manifolds that is put forward in the present proposal leads to a new insight on robust measurements in Hamiltonian dynamics and reveals a new facet of the quantum-classical correspondence, a fundamental principle of quantum theory.
AbstractAward:DMS-1006610首席研究员:Leonid Polterovich拟议的研究属于辛几何和拓扑学,这是一个迅速发展的数学领域,最初是作为经典力学问题的几何工具出现的。20世纪80年代的“辛革命”引起了令人惊讶的刚性现象的发现,涉及辛流形,它们的子集和辛同态。最近的一些进展表明,还有另一种表现形式的辛刚性,发生在功能空间相关联的辛流形。这些空间表现出意想不到的性质和有趣的结构,引起了另一种直觉和新的工具,辛拓扑,并提供了一个动机,研究辛流形上的函数理论。 发展这一新理论及其应用是拟议研究的主要目标。我们专注于以下主题。首先,我们研究了Poisson括号的鲁棒性。泊松括号是一种基本运算,它涉及一对函数,并由它们的导数定义。 泊松括号的某些特性表现出令人惊讶的鲁棒性方面的小扰动的一致范数,即使这样的扰动可以显着改变的衍生物。这种现象似乎是密切相关的霍费尔的几何上的一组辛代数同态。第二,我们处理辛准态理论的各个方面。考虑辛流形上的函数空间。辛拟态是这个空间上的单调泛函,它在每个Poisson交换子代数上是线性的,但不一定在整个空间上是线性的。这个概念的起源可以追溯到量子力学的基础。高维流形上的非线性准态由现代辛拓扑的基石Floer理论提供。准态是辛拓扑学中许多问题的有用工具,如辛交和拉格朗日结。最后,我们统一了这两个主题,并探讨辛准状态和泊松括号之间的相互关系。辛拓扑富有成效地与几个科学领域相互作用,这些领域通过其在技术上的应用对社会产生了重大影响。这些领域之一是哈密顿动力学,这是一门数学学科,为模拟各种基本物理和技术过程提供了有效的工具,如卫星的轨道运动,光纤中的光传播和带电粒子通过加速器的运动。 另一个是量子理论,这是物理学的一个分支,研究物质在微观尺度上的行为,其潜在的应用范围远达密码学和计算机技术。辛流形上的函数理论的发展,提出了在本建议导致一个新的见解稳健的测量哈密顿动力学,揭示了一个新的方面的量子经典对应,量子理论的基本原则。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shmuel Weinberger其他文献

Bruce Williams
  • DOI:
    10.1007/s10711-010-9510-y
  • 发表时间:
    2010-06-08
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Bill Dwyer;John Klein;Shmuel Weinberger
  • 通讯作者:
    Shmuel Weinberger
The Fractal Nature of Riem/Diff I
  • DOI:
    10.1023/a:1026358815492
  • 发表时间:
    2003-01-01
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Alexander Nabutovsky;Shmuel Weinberger
  • 通讯作者:
    Shmuel Weinberger
Correction to: Parametrized topological complexity of collision‑free motion planning in the plane
Rationality ofρ-invariants
  • DOI:
    10.1007/bf02621596
  • 发表时间:
    1996-09-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Shmuel Weinberger
  • 通讯作者:
    Shmuel Weinberger
CLASSES TOPOLOGIQUES CARACTERISTIQUES POUR LES ACTIONS DE GROUPES SUR LES ESPACES SINGULIERS
奇异空间组动作的拓扑特征类
  • DOI:
  • 发表时间:
    1991
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sylvain E. Cappell;J. Shaneson;Shmuel Weinberger
  • 通讯作者:
    Shmuel Weinberger

Shmuel Weinberger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shmuel Weinberger', 18)}}的其他基金

Quantitative Topology and Embedding Theory
定量拓扑和嵌入理论
  • 批准号:
    2105451
  • 财政年份:
    2021
  • 资助金额:
    $ 32.42万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Topology of Automated Motion Planning
DMS-EPSRC:自动运动规划拓扑
  • 批准号:
    2105553
  • 财政年份:
    2021
  • 资助金额:
    $ 32.42万
  • 项目类别:
    Standard Grant
Research in Geometric and Quantitative Topology
几何与定量拓扑研究
  • 批准号:
    1811071
  • 财政年份:
    2018
  • 资助金额:
    $ 32.42万
  • 项目类别:
    Standard Grant
Problems in Geometric, Algebraic and Quantitative Topology
几何、代数和定量拓扑问题
  • 批准号:
    1510178
  • 财政年份:
    2015
  • 资助金额:
    $ 32.42万
  • 项目类别:
    Continuing Grant
2014 MIDWEST REPRESENTATION THEORY CONFERENCE, September 5-7, 2014
2014年中西部代表理论会议,2014年9月5-7日
  • 批准号:
    1431425
  • 财政年份:
    2014
  • 资助金额:
    $ 32.42万
  • 项目类别:
    Standard Grant
Problems in Geometric and Quantitative Topology
几何和定量拓扑问题
  • 批准号:
    1105657
  • 财政年份:
    2011
  • 资助金额:
    $ 32.42万
  • 项目类别:
    Continuing Grant
SGER: The Algebraic Topology of Random Fields and its Applications
SGER:随机场的代数拓扑及其应用
  • 批准号:
    0852227
  • 财政年份:
    2008
  • 资助金额:
    $ 32.42万
  • 项目类别:
    Standard Grant
Quantitative problems in Topology
拓扑学中的定量问题
  • 批准号:
    0805913
  • 财政年份:
    2008
  • 资助金额:
    $ 32.42万
  • 项目类别:
    Continuing Grant
Directions in Quantitative Topology
定量拓扑方向
  • 批准号:
    0504721
  • 财政年份:
    2005
  • 资助金额:
    $ 32.42万
  • 项目类别:
    Continuing Grant
Collaborative Research: Geometric and Analytic Properties of Discrete Groups--A Focused Research Group on the Novikov Conjecture and the Baum-Connes Conjecture
协作研究:离散群的几何性质和解析性质--诺维科夫猜想和鲍姆-康纳斯猜想重点研究组
  • 批准号:
    0073812
  • 财政年份:
    2000
  • 资助金额:
    $ 32.42万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Representation Theory and Symplectic Geometry Inspired by Topological Field Theory
拓扑场论启发的表示论和辛几何
  • 批准号:
    2401178
  • 财政年份:
    2024
  • 资助金额:
    $ 32.42万
  • 项目类别:
    Standard Grant
Critical symplectic geometry, Lagrangian cobordisms, and stable homotopy theory
临界辛几何、拉格朗日配边和稳定同伦理论
  • 批准号:
    2305392
  • 财政年份:
    2023
  • 资助金额:
    $ 32.42万
  • 项目类别:
    Standard Grant
Probing Near-Symplectic 4-Manifolds and Contact 3-Manifolds with Seiberg-Witten Theory
用 Seiberg-Witten 理论探测近辛 4 流形和接触 3 流形
  • 批准号:
    2147753
  • 财政年份:
    2021
  • 资助金额:
    $ 32.42万
  • 项目类别:
    Standard Grant
Study of symplectic geometry and topological data analysis with sheaf theory
辛几何研究和层理论拓扑数据分析
  • 批准号:
    21K13801
  • 财政年份:
    2021
  • 资助金额:
    $ 32.42万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
symplectic field theory の応用
辛场论的应用
  • 批准号:
    21K13789
  • 财政年份:
    2021
  • 资助金额:
    $ 32.42万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of the theory of partial quasimorphisms and symplectic geometry
部分拟同构和辛几何理论的发展
  • 批准号:
    21K13790
  • 财政年份:
    2021
  • 资助金额:
    $ 32.42万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Applications of Symplectic Geometry to Frame Theory and Signal Processing
合作研究:辛几何在框架理论和信号处理中的应用
  • 批准号:
    2107700
  • 财政年份:
    2021
  • 资助金额:
    $ 32.42万
  • 项目类别:
    Standard Grant
Gauge Theory and Invariants of Symplectic Manifolds
规范理论和辛流形不变量
  • 批准号:
    2104919
  • 财政年份:
    2021
  • 资助金额:
    $ 32.42万
  • 项目类别:
    Continuing Grant
Probing Near-Symplectic 4-Manifolds and Contact 3-Manifolds with Seiberg-Witten Theory
用 Seiberg-Witten 理论探测近辛 4 流形和接触 3 流形
  • 批准号:
    2105445
  • 财政年份:
    2021
  • 资助金额:
    $ 32.42万
  • 项目类别:
    Standard Grant
Lagrangian Skeleta in Symplectic Geometry and Representation Theory
辛几何与表示论中的拉格朗日骨架
  • 批准号:
    2101466
  • 财政年份:
    2021
  • 资助金额:
    $ 32.42万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了