Estimation, inference and testing for large-scale directed network models

大规模有向网络模型的估计、推理和测试

基本信息

  • 批准号:
    1811767
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Large-scale interaction networks naturally arise in many modern scientific applications. For example, in biochemistry and systems biology, amino acids in different locations of the protein sequence interact, while in computational neuroscience, connectivity networks amongst neurons in the brain naturally trigger responses to particular stimuli. This project will develop reliable and scalable algorithms for learning the underlying interaction network amongst many nodes. Due to both the scale, complexity, and the changing data technologies in the applications described above, the solutions to the challenges addressed in this project will lead both to the development of novel theory and methodology, and the implementation of new algorithms for the application domains. The goal of the project is to address the challenge of estimation, inference and testing for large-scale network models. Given the size of the networks generated, this project presents a number of computational and statistical challenges the PI will address by focusing on two methodologies: (i) multivariate time series models; (ii) directed graphical models. The PI's prior work has developed new theory and methodology both for large-scale non-linear time series models and directed graphical models. This prior work points to a number of significant open challenges for both methodologies that this project will. These challenges include: (i) lack of sample size/statistical resources for learning complicated dependence structures; (ii) computational challenges due to non-convexity and large search-spaces for dependence models; (iii) incorporating domain knowledge and scientific experiments into the estimation methodologies; and (iv) exploiting learned networks for hypothesis testing, inference, and parameter estimation. This project will address these challenges and these contributions will lead to the development of new methods for network learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大规模交互网络自然出现在许多现代科学应用中。例如,在生物化学和系统生物学中,蛋白质序列不同位置的氨基酸相互作用,而在计算神经科学中,大脑中神经元之间的连接网络自然触发对特定刺激的反应。该项目将开发可靠和可扩展的算法,用于学习许多节点之间的底层交互网络。由于上述应用程序的规模、复杂性和不断变化的数据技术,本项目所解决的挑战的解决方案将导致新理论和方法的发展,以及应用程序领域的新算法的实现。该项目的目标是解决大规模网络模型的估计、推理和测试的挑战。鉴于所生成的网络的规模,该项目提出了许多计算和统计方面的挑战,PI将通过关注两种方法来解决:(i)多变量时间序列模型;(ii)有向图形模型。PI先前的工作为大规模非线性时间序列模型和有向图形模型开发了新的理论和方法。这项先前的工作指出了本项目将面临的两种方法的一些重大挑战。这些挑战包括:(i)缺乏用于学习复杂依赖结构的样本量/统计资源;(ii)依赖模型的非凸性和大搜索空间带来的计算挑战;(三)将领域知识和科学实验纳入估算方法;(iv)利用学习网络进行假设检验、推理和参数估计。这个项目将解决这些挑战,这些贡献将导致网络学习新方法的发展。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lazy Estimation of Variable Importance for Large Neural Networks
  • DOI:
    10.48550/arxiv.2207.09097
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yue Gao;Abby Stevens;Garvesh Raskutti;R. Willett
  • 通讯作者:
    Yue Gao;Abby Stevens;Garvesh Raskutti;R. Willett
The bias of isotonic regression
  • DOI:
    10.1214/20-ejs1677
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Dai, Ran;Song, Hyebin;Raskutti, Garvesh
  • 通讯作者:
    Raskutti, Garvesh
ISLET: Fast and Optimal Low-rank Tensor Regression via Importance Sketching
  • DOI:
    10.1137/19m126476x
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anru R. Zhang;Yuetian Luo;Garvesh Raskutti;M. Yuan
  • 通讯作者:
    Anru R. Zhang;Yuetian Luo;Garvesh Raskutti;M. Yuan
Stochastic Gradient Descent in Correlated Settings: A Study on Gaussian Processes
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hao Chen;Lili Zheng;R. Kontar;Garvesh Raskutti
  • 通讯作者:
    Hao Chen;Lili Zheng;R. Kontar;Garvesh Raskutti
PUlasso: High-Dimensional Variable Selection With Presence-Only Data
PUlasso:仅存在数据的高维变量选择
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Garvesh Raskutti其他文献

Network estimation via poisson autoregressive models
通过泊松自回归模型进行网络估计
The Frugal Inference of Causal Relations
因果关系的节俭推理
Minimax Optimal Convex Methods for Poisson Inverse Problems Under $ell_{q}$ -Ball Sparsity
$ell_{q}$ -球稀疏性下泊松反问题的极小极大最优凸方法
Testing for high-dimensional network parameters in auto-regressive models
自回归模型中高维网络参数的测试
  • DOI:
    10.1214/19-ejs1646
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Lili Zheng;Garvesh Raskutti
  • 通讯作者:
    Garvesh Raskutti
Statistical and Algorithmic Perspectives on Randomized Sketching for Ordinary Least-Squares
普通最小二乘随机草图的统计和算法视角

Garvesh Raskutti的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Garvesh Raskutti', 18)}}的其他基金

A reliable and scalable approach to causal inference for large-scale multivariate data
一种可靠且可扩展的大规模多元数据因果推理方法
  • 批准号:
    1407028
  • 财政年份:
    2014
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant

相似海外基金

Estimation and inference in directed acyclic graphical models for biological networks
生物网络有向无环图模型的估计和推理
  • 批准号:
    10330130
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
Estimation and inference in directed acyclic graphical models for biological networks
生物网络有向无环图模型的估计和推理
  • 批准号:
    10595510
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
Shape-constrained Inference: Testing and Estimation for Incomplete Survival Data
形状约束推理:不完整生存数据的测试和估计
  • 批准号:
    RGPIN-2021-03124
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Shape-constrained Inference: Testing and Estimation for Incomplete Survival Data
形状约束推理:不完整生存数据的测试和估计
  • 批准号:
    DGECR-2021-00120
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Launch Supplement
Efficient nonparametric estimation of heterogeneous treatment effects in causal inference
因果推理中异质治疗效果的有效非参数估计
  • 批准号:
    10297407
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
Efficient nonparametric estimation of heterogeneous treatment effects in causal inference
因果推理中异质治疗效果的有效非参数估计
  • 批准号:
    10466912
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
Shape-constrained Inference: Testing and Estimation for Incomplete Survival Data
形状约束推理:不完整生存数据的测试和估计
  • 批准号:
    RGPIN-2021-03124
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient nonparametric estimation of heterogeneous treatment effects in causal inference
因果推理中异质治疗效果的有效非参数估计
  • 批准号:
    10610947
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
Evaluating predictors of HIV vaccine efficacy: Statistical methods for estimation, testing, and inference
评估 HIV 疫苗功效的预测因素:估计、测试和推断的统计方法
  • 批准号:
    9769500
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
Estimation and Inference of Gene Regulatory Networks
基因调控网络的估计和推断
  • 批准号:
    10001547
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了