Estimation and Inference of Gene Regulatory Networks

基因调控网络的估计和推断

基本信息

  • 批准号:
    10001547
  • 负责人:
  • 金额:
    $ 32.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-15 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary Alzheimer’s disease (AD) is the most common neurodegenerative disease without a cure, and most cases are often diagnosed in the late stage of the disease. To advance our understanding of the initiation, progression, and etiology of such a disease, many genetic and genomic studies, including genome-wide association studies (GWAS), have been conducted, successfully identifying some associated single-nucleotide polymorphisms (SNPs). However, since many of these associated SNPs are either close to multiple genes or far away from any genes, identifying the responsible genes and thus understanding biological mechanisms with the disease remain most challenging. Of paramount importance is unraveling and understanding the regulatory roles of susceptible SNPs and genes for complex human diseases such as AD, so that treatment and prevention strategies can be developed. Given the urgent need of understanding the biological mechanisms of the disease, the PIs propose to develop powerful statistical and computational tools for accurate inference of gene regulatory networks for AD patients and healthy subjects. The proposed project consists of two interconnected components: reconstruction and inference of regulatory networks of the genes and SNPs. It will be centered on structures of regulatory networks, with particular effort focused on the accuracy of discovery and unbiased inference in high-dimensional situations, where model pa- rameters describing regulatory networks may greatly exceed the sample size. With regard to reconstruction of regulatory networks, the project will develop the constrained maximum likelihood method to identify directionality as well as strengths of pairwise causal relations, modeled by directed acyclic graphs (DAGs) among the genes and SNPs. With regard to network inference, the project will develop novel tests as formal inference methods for DAGs. On this ground, high-dimensional inference tools will be developed for detecting structural changes of multi- ple networks using the constrained likelihood tests. Moreover, linear and nonlinear causal relations will be studied. Computationally, innovative strategies will be developed based on the state-of-the-art optimization techniques, and be used for scalable analysis of large-scale networks.
项目概要 阿尔茨海默病 (AD) 是最常见的神经退行性疾病,无法治愈,大多数病例 往往在疾病晚期才被诊断出来。为了增进我们对起始、进展的理解, 和此类疾病的病因学,许多遗传和基因组研究,包括全基因组关联研究 (GWAS)已进行,成功鉴定了一些相关的单核苷酸多态性(SNP)。 然而,由于许多相关的 SNP 要么靠近多个基因,要么远离任何基因, 识别负责的基因,从而了解该疾病的生物学机制仍然是最重要的 具有挑战性的。最重要的是阐明和理解易受影响的 SNP 的调节作用 以及 AD 等复杂人类疾病的基因,以便制定治疗和预防策略。 鉴于迫切需要了解该疾病的生物学机制,PI 建议开发 强大的统计和计算工具,可准确推断 AD 患者的基因调控网络 健康的受试者。 拟议的项目由两个相互关联的部分组成:监管的重建和推断 基因和 SNP 的网络。它将以监管网络的结构为中心,并特别努力 专注于高维情况下发现和无偏推理的准确性,其中模型 描述监管网络的参数可能大大超出样本量。关于重建 监管网络,该项目将开发约束最大似然法来识别方向性 以及成对因果关系的强度,通过基因之间的有向无环图 (DAG) 建模 和 SNP。关于网络推理,该项目将开发新的测试作为正式的推理方法 DAG。在此基础上,将开发高维推理工具来检测多维结构的变化。 使用约束似然检验的 ple 网络。此外,还将研究线性和非线性因果关系。 在计算方面,将基于最先进的优化技术开发创新策略,并且 可用于大规模网络的可扩展分析。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wei Pan其他文献

Wei Pan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wei Pan', 18)}}的其他基金

Estimation and inference in directed acyclic graphical models for biological networks
生物网络有向无环图模型的估计和推理
  • 批准号:
    10330130
  • 财政年份:
    2022
  • 资助金额:
    $ 32.82万
  • 项目类别:
Estimation and inference in directed acyclic graphical models for biological networks
生物网络有向无环图模型的估计和推理
  • 批准号:
    10595510
  • 财政年份:
    2022
  • 资助金额:
    $ 32.82万
  • 项目类别:
Causal and integrative deep learning for Alzheimer's disease genetics
阿尔茨海默病遗传学的因果和综合深度学习
  • 批准号:
    10267373
  • 财政年份:
    2021
  • 资助金额:
    $ 32.82万
  • 项目类别:
Causal and integrative deep learning for Alzheimer's disease genetics
阿尔茨海默病遗传学的因果和综合深度学习
  • 批准号:
    10483117
  • 财政年份:
    2021
  • 资助金额:
    $ 32.82万
  • 项目类别:
Discovering causal genes, brain regions and other risk factors for Alzheimer'a disease
发现阿尔茨海默病的致病基因、大脑区域和其他危险因素
  • 批准号:
    10358645
  • 财政年份:
    2020
  • 资助金额:
    $ 32.82万
  • 项目类别:
Integrating Alzheimer's disease GWAS with proteomic and metabolomic QTL data
将阿尔茨海默病 GWAS 与蛋白质组学和代谢组学 QTL 数据整合
  • 批准号:
    10018279
  • 财政年份:
    2020
  • 资助金额:
    $ 32.82万
  • 项目类别:
Deep Learning with Neuroimaging Genetic Data for Alzheimer's Disease
利用神经影像遗传数据进行深度学习治疗阿尔茨海默病
  • 批准号:
    10647797
  • 财政年份:
    2020
  • 资助金额:
    $ 32.82万
  • 项目类别:
Discovering causal genes, brain regions and other risk factors for Alzheimer'a disease
发现阿尔茨海默病的致病基因、大脑区域和其他危险因素
  • 批准号:
    10561609
  • 财政年份:
    2020
  • 资助金额:
    $ 32.82万
  • 项目类别:
Deep Learning with Neuroimaging Genetic Data for Alzheimer's Disease
利用神经影像遗传数据进行深度学习治疗阿尔茨海默病
  • 批准号:
    10088703
  • 财政年份:
    2020
  • 资助金额:
    $ 32.82万
  • 项目类别:
Discovering causal genes, brain regions and other risk factors for Alzheimer'a disease
发现阿尔茨海默病的致病基因、大脑区域和其他危险因素
  • 批准号:
    10116249
  • 财政年份:
    2020
  • 资助金额:
    $ 32.82万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 32.82万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 32.82万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 32.82万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 32.82万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 32.82万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 32.82万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 32.82万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 32.82万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 32.82万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.82万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了