Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
基本信息
- 批准号:RGPIN-2018-06466
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In statistical science, a regression model is a mathematical formula used to describe association between a response variable and a set of covariates. Traditional regression analysis assumes that data concerning the response variable can be fully recorded and the mathematical formula is explicitly defined; it requires sample size to be larger than number of covariates. However, these assumptions are not always realistic in modelling real data. If one or more of these assumptions are violated, many existing approaches to statistical analysis cease to be useful. For example, responses may not be fully observed due to truncation and censoring; covariates may be high-dimensional and grouped. The aims of this proposal are to develop so called new semiparametric regression models to deal with these problems, and provide solutions to scientific problems which are related to Canadians' economics and health. The responses in these regression models could be a patient's lifetime, a person's income, and an insurance company's claim; the covariates could be a patient's genes and treatments received, a person's social and economic factors. For example, in genomics studies for cancer diseases, thousands of genes are measured and some of them might be related to a disease and affect patients' lifetime, besides, measurements of gene expression can be grouped by gene pathways. To prolong patients' lifetime, it is very important to identify and select those important individual genes and gene groups through our new regression models, then find an effective treatment to cure the disease and improve quality of life. ******In addition to the theoretical innovations from the proposed research, the research outcomes would be extremely useful and appealing from a practical point of view. For instance, in one of my collaborative projects on the data analysis from the Canadian Study of Health and Aging, one of the largest epidemiological studies of dementia, where survival time was left-truncated and right-censored. Compared to Alzheimer, vascular dementia has been understudied. Our preliminary analysis using the proposed new statistical method of incorporating information from the truncation time distribution provides more accurate results to show that the elderly people with vascular dementia have worse survival than those with Alzheimer. Our result will give an answer on the impact of dementia on life expectancy and helps epidemiologists and patients to understand and cure the diseases better. ******The proposed program provides opportunities for the training of highly qualified personnel's (HQPs) at all levels, either through fundamental methodological research or collaborative projects. Further, our research outcomes will be made easily and widely accessible to Canadians, through publishing research papers in high-impact and open-access journals and distributing computer software in platforms such as R and GitHub.
在统计科学中,回归模型是一个数学公式,用于描述响应变量和一组协变量之间的关联。传统的回归分析假设关于响应变量的数据可以被完整记录,并且数学公式被明确定义,它要求样本容量大于协变量的数量。然而,这些假设在模拟真实的数据时并不总是现实的。如果这些假设中的一个或多个被违反,许多现有的统计分析方法就不再有用。例如,由于截断和删失,可能无法完全观察到响应;协变量可能是高维的,并且是分组的。该提案的目的是开发所谓的新的半参数回归模型来处理这些问题,并为与加拿大人的经济和健康有关的科学问题提供解决方案。这些回归模型中的响应可以是患者的一生、个人的收入和保险公司的索赔;协变量可以是患者的基因和接受的治疗、个人的社会和经济因素。例如,在癌症疾病的基因组学研究中,测量了数千个基因,其中一些基因可能与疾病有关并影响患者的一生,此外,基因表达的测量可以按基因通路分组。为了延长患者的生命,通过我们新的回归模型识别和选择那些重要的个体基因和基因组,从而找到治疗疾病和改善生活质量的有效治疗方法是非常重要的。** 除了拟议研究的理论创新外,从实践的角度来看,研究成果将非常有用和有吸引力。例如,在我的一个关于加拿大健康与衰老研究数据分析的合作项目中,这是最大的痴呆症流行病学研究之一,其中生存时间被左截短和右审查。与阿尔茨海默病相比,血管性痴呆的研究还不够充分。我们的初步分析,使用新的统计方法,将信息从截断时间分布提供了更准确的结果表明,血管性痴呆的老年人有更差的生存比阿尔茨海默氏症。我们的研究结果将回答痴呆对预期寿命的影响,并帮助流行病学家和患者更好地了解和治疗疾病。** 拟议的方案提供了机会,培训高素质的人员(HQP)在各级,无论是通过基本的方法研究或合作项目。此外,我们的研究成果将通过在高影响力和开放获取的期刊上发表研究论文,并在R和GitHub等平台上分发计算机软件,使加拿大人能够轻松和广泛地获得。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lu, Xuewen其他文献
Estimation of the Birnbaum-Saunders regression model with current status data
使用当前状态数据估计 Birnbaum-Saunders 回归模型
- DOI:
10.1016/j.csda.2009.08.013 - 发表时间:
2010-02 - 期刊:
- 影响因子:0
- 作者:
Xiao, Qingchu;Liu, Zaiming;Balakrishnan, N.;Lu, Xuewen - 通讯作者:
Lu, Xuewen
Real-time quantitative PCR detection of circulating tumor cells using tag DNA mediated signal amplification strategy
使用标签DNA介导的信号放大策略实时定量PCR检测循环肿瘤细胞
- DOI:
10.1016/j.jpba.2018.06.009 - 发表时间:
2018-09-05 - 期刊:
- 影响因子:3.4
- 作者:
Mei, Ting;Lu, Xuewen;Fang, Zhiyuan - 通讯作者:
Fang, Zhiyuan
Improved performance of lateral flow immunoassays for alpha-fetoprotein and vanillin by using silica shell-stabilized gold nanoparticles
使用二氧化硅壳稳定的金纳米粒子提高甲胎蛋白和香草醛的侧流免疫分析性能
- DOI:
10.1007/s00604-018-3107-9 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:5.7
- 作者:
Lu, Xuewen;Mei, Ting;Fang, Zhiyuan - 通讯作者:
Fang, Zhiyuan
A bibliometric analysis of publications on obsessive-compulsive disorder using VOSviewer.
- DOI:
10.3389/fpsyt.2023.1136931 - 发表时间:
2023 - 期刊:
- 影响因子:4.7
- 作者:
Tang, Yimiao;Lu, Xuewen;Wan, Xin;Hu, Maorong - 通讯作者:
Hu, Maorong
Longitudinal Data Analysis with Event Time as a Covariate
- DOI:
10.1007/s12561-010-9021-2 - 发表时间:
2010-07-01 - 期刊:
- 影响因子:1
- 作者:
Lu, Xuewen;Nan, Bin;Sowers, MaryFran - 通讯作者:
Sowers, MaryFran
Lu, Xuewen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lu, Xuewen', 18)}}的其他基金
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
- 批准号:
RGPIN-2018-06466 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
- 批准号:
RGPIN-2018-06466 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
- 批准号:
RGPIN-2018-06466 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
- 批准号:
RGPIN-2018-06466 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Inference and variable selection in semiparametric survival models with censored or missing data
具有删失或缺失数据的半参数生存模型中的推理和变量选择
- 批准号:
261567-2013 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Inference and variable selection in semiparametric survival models with censored or missing data
具有删失或缺失数据的半参数生存模型中的推理和变量选择
- 批准号:
261567-2013 - 财政年份:2016
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Inference and variable selection in semiparametric survival models with censored or missing data
具有删失或缺失数据的半参数生存模型中的推理和变量选择
- 批准号:
261567-2013 - 财政年份:2015
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Inference and variable selection in semiparametric survival models with censored or missing data
具有删失或缺失数据的半参数生存模型中的推理和变量选择
- 批准号:
261567-2013 - 财政年份:2014
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Inference and variable selection in semiparametric survival models with censored or missing data
具有删失或缺失数据的半参数生存模型中的推理和变量选择
- 批准号:
261567-2013 - 财政年份:2013
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Semiparametric statistical methods for censored or missing data and their applications in survival analysis and other related areas
截尾或缺失数据的半参数统计方法及其在生存分析和其他相关领域的应用
- 批准号:
261567-2008 - 财政年份:2012
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
连锁群选育法(Linkage Group Selection)在柔嫩艾美耳球虫表型相关基因研究中应用
- 批准号:30700601
- 批准年份:2007
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CRII: CIF: Sequential Decision-Making Algorithms for Efficient Subset Selection in Multi-Armed Bandits and Optimization of Black-Box Functions
CRII:CIF:多臂老虎机中高效子集选择和黑盒函数优化的顺序决策算法
- 批准号:
2246187 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Development and implementation of a small-scale and highly efficient genomic selection method using "look-ahead" based on reinforcement learning
基于强化学习的“前瞻”小规模高效基因组选择方法的开发和实施
- 批准号:
22H02306 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Novel strategies for efficient selection of lines with synchronised development by using properties of the circadian clock
利用生物钟的特性有效选择具有同步发育的品系的新策略
- 批准号:
BB/V006665/1 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Research Grant
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
- 批准号:
RGPIN-2018-06466 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
- 批准号:
RGPIN-2018-06466 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
- 批准号:
RGPIN-2018-06466 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
- 批准号:
RGPIN-2018-06466 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Safe and efficient selection of differentiated cells by stage-specific gene expression from auto-erasable vector
通过自动擦除载体的阶段特异性基因表达安全有效地选择分化细胞
- 批准号:
19K22945 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
GOALI: Omics- and metabolically-informed out-selection of Nitrospira spp. and Comammox bacteria from energy efficient engineered nitrogen removal processes
目标:Nitrospira spp 的组学和代谢信息淘汰选择。
- 批准号:
1706726 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Efficient enrichment of homozygous bi-allelic knockout microminiature porcine cells using a novel selection system and production of genome-edited cloned piglets
使用新型选择系统有效富集纯合双等位基因敲除微型猪细胞并生产基因组编辑的克隆仔猪
- 批准号:
15K07695 - 财政年份:2015
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)