Geometry of Physical Models Governed by Diffusion
扩散控制的物理模型的几何
基本信息
- 批准号:1812009
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over the past decades probability theory has had tremendous success in elucidating scaling limits and large-scale phenomena. However, systems that have no apparent scaling limit are abundant in both the physical and life sciences, and there is practical need to better understand such systems. This research project aims to advance understanding of such systems by studying models augmented with additional symmetries that share the local behavior of the classical disordered systems under study. Graduate students and postdoctoral associates will receive training through involvement in the research. The topics under study in this project divide into three subareas: (1) stationary diffusion limited aggregation (DLA) and Hastings-Levitov models, (2) DLA in a wedge, and (3) chemical distance in random interlacements. These models are of interest for statistical mechanics and mathematical physics. They share the features of being generated by diffusion or the harmonic measure, and of attempting to grasp the nature of a physical phenomenon that is not amenable more classical models in the field, such as DLA or Bernoulli percolation. The methods to be employed borrow ideas and tools from various mathematical disciplines, including complex analysis, harmonic analysis, differential equations, and ergodic theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的几十年里,概率论在阐明尺度极限和大尺度现象方面取得了巨大的成功。然而,在物理和生命科学中,没有明显尺度限制的系统是丰富的,并且实际上需要更好地理解这样的系统。该研究项目旨在通过研究增加了额外对称性的模型来促进对此类系统的理解,这些对称性与所研究的经典无序系统的局部行为相同。研究生和博士后助理将通过参与研究接受培训。本计画的研究主题分为三个子领域:(1)固定扩散限制聚集(DLA)与Hastings-Levitov模型,(2)楔形中的DLA,以及(3)随机交错中的化学距离。 这些模型是统计力学和数学物理的兴趣。 它们都具有由扩散或调和测度产生的特征,并试图把握一种物理现象的本质,这种物理现象不适合该领域的经典模型,如DLA或伯努利渗流。所采用的方法借用了各种数学学科的思想和工具,包括复分析、调和分析、微分方程和遍历理论。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On covering monotonic paths with simple random walk
用简单的随机游走覆盖单调路径
- DOI:10.1214/20-ejp545
- 发表时间:2020
- 期刊:
- 影响因子:1.4
- 作者:Procaccia, Eviatar B.;Zhang, Yuan
- 通讯作者:Zhang, Yuan
Dimension of diffusion-limited aggregates grown on a line
在线生长的扩散限制聚集体的尺寸
- DOI:10.1103/physreve.103.l020101
- 发表时间:2021
- 期刊:
- 影响因子:2.4
- 作者:Procaccia, Eviatar B.;Procaccia, Itamar
- 通讯作者:Procaccia, Itamar
Stationary Harmonic Measure and DLA in the Upper Half Plane
- DOI:10.1007/s10955-019-02327-y
- 发表时间:2017-11
- 期刊:
- 影响因子:1.6
- 作者:Eviatar B. Procaccia;Y. Zhang
- 通讯作者:Eviatar B. Procaccia;Y. Zhang
Percolation for the Finitary Random interlacements
有限随机交错的渗流
- DOI:10.30757/alea.v18-12
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Procaccia, Eviatar B.;Ye, Jiayan;Zhang, Yuan
- 通讯作者:Zhang, Yuan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eviatar Procaccia其他文献
Eviatar Procaccia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
面向智能电网基础设施Cyber-Physical安全的自治愈基础理论研究
- 批准号:61300132
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
- 批准号:
2336840 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Conference: SICB 2024: Computational and Physical Models in Research and Teaching to Explore Form-Function Relationships
会议:SICB 2024:研究和教学中的计算和物理模型探索形式-功能关系
- 批准号:
2326876 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
- 批准号:
2306962 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Physical Models for Cancer Cells with Links to Alterations in Genome Organization
与基因组组织改变相关的癌细胞物理模型
- 批准号:
2310639 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Improving Interpretable Machine Learning for Plasmas: Towards Physical Insight, Data-Driven Models, and Optimal Sensing
改进等离子体的可解释机器学习:迈向物理洞察、数据驱动模型和最佳传感
- 批准号:
2329765 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
A Study on Language Acquisition using Physical Analysis of Learning Models in Teacher-Student Setting
利用师生环境中学习模式的物理分析进行语言习得研究
- 批准号:
23KJ0622 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Non-Perturbative Analysis of Physical and Mathematical Models
物理和数学模型的非微扰分析
- 批准号:
2206241 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Statistical Models and Mechanisms Linking Biomarkers of Aging to Cognitive-Physical Decline and Dementia
将衰老生物标志物与认知身体衰退和痴呆联系起来的统计模型和机制
- 批准号:
10513438 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Thermodynamic and physical property models for the production of greener aluminum alloys
用于生产绿色铝合金的热力学和物理性能模型
- 批准号:
560998-2020 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Alliance Grants