SCH: INT: Collaborative Research: High-throughput Phenotyping on Electronic Health Records using Multi-Tensor Factorization
SCH:INT:协作研究:使用多张量分解对电子健康记录进行高通量表型分析
基本信息
- 批准号:1417697
- 负责人:
- 金额:$ 66.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As the adoption of electronic health records (EHRs) has grown, EHRs are now composed of a diverse array of data, including structured information (e.g., diagnoses, medications, and lab results), molecular sequences, unstructured clinical progress notes, and social network information. There is mounting evidence that EHRs are a rich resource for clinical research, but they are notoriously difficult to leverage because of their orientation to healthcare business operations, heterogeneity across commercial systems, and high levels of missing or erroneous entries. Moreover, the interactions among different data sources within an EHR are challenging to model, hampering our ability to leverage traditional analytic frameworks. In recognition of this problem, various efforts have been undertaken to transform EHR data into concise and meaningful concepts, or phenotypes. Yet, to date, these efforts have been ad hoc and labor intensive, resulting in specific phenotypes for specific environments; e.g., type 2 diabetes in the EHR system at Vanderbilt University Medical Center (VUMC). There is an urgent need for scalable phenotyping methods, but several major challenges must be addressed, including: a) patient representation, b) high-throughput phenotype generation from EHRs, c) expert-guided phenotype refinement, and d) phenotype adaptation across institutions. The goal of this project is to address these challenges by developing a general computational framework for transforming EHR data into meaningful phenotypes with only modest levels of expert guidance. The PIs will develop novel courses on Healthcare Analytics as a Massive Open Online Course (MOOC) that covers cross-disciplinary topics at the confluence of computer science and medical informatics, while embellishing existing graduate courses on biomedical informatics. The PIs plan to deliver tutorials and organize workshops at relevant computer science and medical informatics conferences with the goal of sharing research results and developing a community. The PIs will develop outreach modules that focus on freshmen and under-represented students, as well as educational sessions for clinical researchers who are currently performing phenotyping in academic medical centers. Thus, the project has a significant component the integrates research and education as well as providing for new scientific insights.In support of this goal, the team plans to represent and analyze EHR data as inter-connected high-order relations i.e. tensors (e.g. tuples of patient-medication-diagnosis, patient-lab, and patient-symptoms). The proposed analytic framework generalizes several existing data mining methodologies, including dimensionality reduction, topic modeling and co-clustering, which all arise as limited special cases of analyzing second order tensors. It will also enable flexible refinement of candidates to adapt phenotypes from one healthcare institution to another, and will incorporate feedback from domain experts. The accompanying suite of algorithms and methods will enable the automation of high-throughput phenotype generation, refinement, adaptation and applications, in a broad range of health informatics settings and across multiple institutions. This project will integrate biomedical informaticists, computer scientists, and clinical experts. The significance of the resulting phenotypes in diverse clinical applications, including: a) cohort construction, where case and control patients are identified with respect to specific phenotype combinations; b) genome wide association studies (GWAS), where target phenotypes of patients are tested against DNA sequence variation for significant statistical associations; and c) clinical predictive modeling, where a model is developed to predict target phenotypes or diseases will be demonstrated. The framework will be developed with public accessible data from MIMIC-II and CMS and validate in real clinical environments at Northwestern Memorial Hospital and VUMC through several high-impact disease targets (including hypertension, type 2 diabetes, hypothyroidism, atrial fibrillation, rheumatoid arthritis, and multiple sclerosis). Additionally, the methodologies developed through this project will be integrated into existing software platforms that support the representation of EHR-derived phenotypes, but lack a data-driven component for the generation and refinement of candidates. Overall, the proposed framework is expected to have a major impact on translational clinical research including clinical trial design, predictive modeling, epidemiology studies and clinical decision support.
随着电子健康记录(EHR)的采用的增长,EHR现在由各种各样的数据组成,包括结构化信息(例如,诊断、药物和实验室结果)、分子序列、非结构化临床进展记录和社交网络信息。越来越多的证据表明,EHR是临床研究的丰富资源,但由于其面向医疗保健业务运营,商业系统之间的异质性以及高水平的缺失或错误条目,因此它们非常难以利用。此外,EHR中不同数据源之间的交互对建模具有挑战性,阻碍了我们利用传统分析框架的能力。认识到这个问题,已经进行了各种努力,将EHR数据转换为简洁和有意义的概念或表型。然而,到目前为止,这些努力是临时的和劳动密集型的,导致特定环境的特定表型;例如,范德比尔特大学医学中心(VUMC)的EHR系统中的2型糖尿病。迫切需要可扩展的表型分型方法,但必须解决几个主要挑战,包括:a)患者代表,B)EHR的高通量表型生成,c)专家指导的表型细化,以及d)跨机构的表型适应。该项目的目标是通过开发一个通用的计算框架来解决这些挑战,该框架用于将EHR数据转换为有意义的表型,只有适度的专家指导。 PI将开发关于医疗保健分析的新课程,作为大规模开放式在线课程(MOOC),涵盖计算机科学和医学信息学融合的跨学科主题,同时美化现有的生物医学信息学研究生课程。PI计划在相关的计算机科学和医学信息学会议上提供教程和组织研讨会,目的是分享研究成果和发展社区。PI将开发外展模块,重点关注新生和代表性不足的学生,以及目前在学术医疗中心进行表型分析的临床研究人员的教育课程。 因此,该项目的一个重要组成部分是整合研究和教育,并提供新的科学见解。为了支持这一目标,该团队计划将EHR数据表示和分析为相互连接的高阶关系,即张量(例如,患者-药物-诊断,患者-实验室和患者-症状的元组)。建议的分析框架概括了现有的几种数据挖掘方法,包括降维,主题建模和共聚类,这些都是分析二阶张量的有限特例。它还将使候选人的灵活改进,以适应从一个医疗机构到另一个医疗机构的表型,并将纳入领域专家的反馈。伴随的一套算法和方法将使高通量表型生成,改进,适应和应用的自动化,在广泛的健康信息学设置和跨多个机构。该项目将整合生物医学信息学家,计算机科学家和临床专家。所得表型在不同临床应用中的意义,包括:a)群组构建,其中关于特定表型组合鉴定病例和对照患者; B)全基因组关联研究(GWAS),其中针对DNA序列变异测试患者的靶表型以获得显著的统计关联;以及c)临床预测建模,其中将展示开发模型以预测目标表型或疾病。该框架将使用MIMIC-II和CMS的公共可访问数据进行开发,并通过几种高影响疾病目标(包括高血压、2型糖尿病、甲状腺功能减退症、房颤、类风湿性关节炎和多发性硬化症)在西北纪念医院和VUMC的真实的临床环境中进行验证。此外,通过该项目开发的方法将被集成到现有的软件平台中,这些平台支持EHR衍生表型的表示,但缺乏用于生成和改进候选人的数据驱动组件。总体而言,拟议的框架预计将对转化临床研究产生重大影响,包括临床试验设计,预测建模,流行病学研究和临床决策支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joydeep Ghosh其他文献
Efficient Machine Learning-assisted Failure Analysis Method for Circuit-level Defect Prediction
用于电路级缺陷预测的高效机器学习辅助故障分析方法
- DOI:
10.1016/j.mlwa.2024.100537 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Joydeep Ghosh - 通讯作者:
Joydeep Ghosh
A generative framework for predictive modeling using variably aggregated, multi-source healthcare data
使用不同聚合的多源医疗保健数据进行预测建模的生成框架
- DOI:
10.1145/2023582.2023587 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Yubin Park;Joydeep Ghosh - 通讯作者:
Joydeep Ghosh
DYNACARE: Dynamic Cardiac Arrest Risk Estimation
DYNACARE:动态心脏骤停风险评估
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Joyce Ho;Yubin Park;C. Carvalho;Joydeep Ghosh - 通讯作者:
Joydeep Ghosh
DYNACARE-OP : Dynamic Cardiac Arrest Risk Estimation Incorporating Ordinal Features
DYNACARE-OP:结合序数特征的动态心脏骤停风险估计
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Joyce Ho;Yubin Park;C. Carvalho;Joydeep Ghosh - 通讯作者:
Joydeep Ghosh
Robust Order Statistics Based Ensembles for Distributed Data Mining
用于分布式数据挖掘的基于稳健阶统计的集成
- DOI:
10.21236/ada396346 - 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Kagan Tumer;Joydeep Ghosh - 通讯作者:
Joydeep Ghosh
Joydeep Ghosh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joydeep Ghosh', 18)}}的其他基金
III: Small: Core: Monotonic Retargeting: A Scalable Learning Framework for Determining Order
III:小:核心:单调重定向:用于确定顺序的可扩展学习框架
- 批准号:
1421729 - 财政年份:2014
- 资助金额:
$ 66.36万 - 项目类别:
Continuing Grant
III: Small: Simultaneous Decomposition and Predictive Modeling on Large Multi-Modal Data
III:小型:大型多模态数据的同时分解和预测建模
- 批准号:
1017614 - 财政年份:2010
- 资助金额:
$ 66.36万 - 项目类别:
Continuing Grant
III-CXT: Collaborative Research: Advanced learning and integrative knowledge transfer approaches to remote sensing and forecast modeling for understanding land use change
III-CXT:协作研究:遥感和预测建模的高级学习和综合知识转移方法,以了解土地利用变化
- 批准号:
0705815 - 财政年份:2007
- 资助金额:
$ 66.36万 - 项目类别:
Standard Grant
III-COR: Versatile Co-clustering Analysis for Bi-modal and Multi-modal Data
III-COR:双模态和多模态数据的多功能共聚类分析
- 批准号:
0713142 - 财政年份:2007
- 资助金额:
$ 66.36万 - 项目类别:
Continuing Grant
Scalable Clustering of Complex Data
复杂数据的可扩展集群
- 批准号:
0307792 - 财政年份:2003
- 资助金额:
$ 66.36万 - 项目类别:
Continuing Grant
ITR: Extraction and Interpretation of Information from Large-Scale Hyperspectral Data for Mapping and Monitoring Wetland Ecosystems
ITR:从大规模高光谱数据中提取和解释信息,用于绘制和监测湿地生态系统
- 批准号:
0312471 - 财政年份:2003
- 资助金额:
$ 66.36万 - 项目类别:
Standard Grant
Knowledge Transfer and Reuse in Multiclassifier Systems
多分类器系统中的知识转移和重用
- 批准号:
9900353 - 财政年份:1999
- 资助金额:
$ 66.36万 - 项目类别:
Standard Grant
RIA: An Integrated Approach to High-Performance Network Technology
RIA:高性能网络技术的集成方法
- 批准号:
9011787 - 财政年份:1990
- 资助金额:
$ 66.36万 - 项目类别:
Standard Grant
相似国自然基金
内源性逆转录病毒MER65-int调控人类胎
盘发育与子宫内膜重塑的功能研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
隐秘重组信号序列INT-RSS在T细胞受体基因Tcra重排中的功能和机制研究
- 批准号:32370939
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
HPV16 E7 通过 Int1 蛋白调控 Wnt 信号通路调节肿瘤局部树突状细胞活性
- 批准号:LQ22H160033
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
选择性PPARγ激动剂INT131调控适应性产热和AD-MSCs分化成棕色样脂肪细胞的机制研究
- 批准号:81903680
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
INT复合物调节U snRNA 3'加工的结构基础
- 批准号:31800624
- 批准年份:2018
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
沉默Int6基因的骨髓间充质干细胞复合生物支架构建血管化腹股沟疝补片及其促补片血管化机制
- 批准号:81371698
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
HIF/Int6调控迟发型EPC体外增殖的机制及其治疗重度子痫前期的可行性
- 批准号:81100439
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
- 批准号:
2343183 - 财政年份:2023
- 资助金额:
$ 66.36万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: DeepSense: Interpretable Deep Learning for Zero-effort Phenotype Sensing and Its Application to Sleep Medicine
SCH:INT:合作研究:DeepSense:零努力表型感知的可解释深度学习及其在睡眠医学中的应用
- 批准号:
2313481 - 财政年份:2022
- 资助金额:
$ 66.36万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
- 批准号:
10573225 - 财政年份:2021
- 资助金额:
$ 66.36万 - 项目类别:
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
- 批准号:
10392429 - 财政年份:2021
- 资助金额:
$ 66.36万 - 项目类别:
SCH: INT: Collaborative Research: Using Multi-Stage Learning to Prioritize Mental Health
SCH:INT:协作研究:利用多阶段学习优先考虑心理健康
- 批准号:
2124270 - 财政年份:2021
- 资助金额:
$ 66.36万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: Privacy-Preserving Federated Transfer Learning for Early Acute Kidney Injury Risk Prediction
SCH:INT:合作研究:用于早期急性肾损伤风险预测的隐私保护联合迁移学习
- 批准号:
2014554 - 财政年份:2020
- 资助金额:
$ 66.36万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: Privacy-Preserving Federated Transfer Learning for Early Acute Kidney Injury Risk Prediction
SCH:INT:合作研究:用于早期急性肾损伤风险预测的隐私保护联合迁移学习
- 批准号:
2014552 - 财政年份:2020
- 资助金额:
$ 66.36万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: An intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
- 批准号:
2019389 - 财政年份:2020
- 资助金额:
$ 66.36万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: An intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
- 批准号:
2013651 - 财政年份:2020
- 资助金额:
$ 66.36万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
- 批准号:
2013122 - 财政年份:2020
- 资助金额:
$ 66.36万 - 项目类别:
Standard Grant