Existence and Energetic Stability of Traveling Waves in the Presence of Symmetry

对称性下行波的存在性和能量稳定性

基本信息

  • 批准号:
    1812436
  • 负责人:
  • 金额:
    $ 18.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Traveling waves are solutions to time-dependent systems that propagate without changing their shape. They are observed throughout the natural world and include surface and internal waves in the ocean, ignition fronts in combustion theory, and even stripe patterns in animal fur. Through their ubiquity, traveling waves command the interest of researchers in nearly every corner of the physical and biological sciences. This project aims to develop novel tools for constructing large-amplitude waves, especially for the important case of pulses, which are localized disturbances that travel through unbounded domains (such as tsunami waves or rough waves). In a related direction, the project will apply and extend a new theoretical framework for diagnosing stability of traveling waves solutions, i.e., capacity of the waves to persist when subjected to a disturbance. This project will advance the mathematical understanding of traveling waves; the results will have implications to oceanography, fluid mechanics, and combustion theory. More generally, the techniques developed by this study are intended to provide a framework with considerable potential for future applications to a broad array of disciplines. Graduate students will be trained and actively involved in this research. This project aims to advance the mathematical understanding of traveling waves along two parallel tracks: existence theory and stability theory. The first set of activities concern the existence of large-amplitude traveling waves on unbounded domains. While many tools currently exist for constructing small-amplitude waves in a neighborhood of known explicit solutions, the non-perturbative regime is far less well understood. This is particularly true for problems set on unbounded domains, for which issues of compactness seriously frustrate what tools are available. This project will develop a global bifurcation theoretic machinery designed to overcome these obstructions using symmetry and monotonicity properties. This new framework will then be used to address important open problems in a variety of systems. Specifically, these applications include (i) construct large-amplitude bore solutions to a two-phase fluid system in a channel; (ii) prove the existence of large-amplitude traveling waves evolving according to general non-compact symmetry groups, for example scroll ring solutions to reaction-diffusion equations; and (iii) extend beyond the appearance of internal stagnation points a family of large-amplitude solitary stratified water waves constructed in earlier work. A second set of projects will develop new systematic tools for diagnosing the orbital stability or instability of traveling solutions to abstract Hamiltonian systems that possess symmetries. This work aims to relax key hypotheses in existing theory to allow more direct application to highly nonlinear systems like those governing water waves. Using this machinery, it is planned to (i) prove the instability of internal waves in a two-phase system confined to a channel and (ii) give a new systematic proof of the stability and instability of Korteweg?de Vries solitons. Moreover, a local well-posedness theory in the Hadamard sense for the water wave problem with a point vortex will be provided.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
行波是在不改变形状的情况下传播的依赖时间的系统的解。它们在整个自然界都可以观察到,包括海洋中的表面波和内波,燃烧理论中的点火前沿,甚至动物毛皮中的条纹图案。由于行波无处不在,几乎引起了物理和生物科学各个角落的研究人员的兴趣。该项目旨在开发新的工具来构造大幅度波,特别是对于脉冲这一重要情况,脉冲是通过无界区域(如海啸波或巨浪)传播的局部扰动。在一个相关的方向上,该项目将应用和扩展一个新的理论框架来诊断行波解的稳定性,即行波在受到扰动时的持续能力。该项目将促进对行波的数学理解,其结果将对海洋学、流体力学和燃烧理论产生影响。更广泛地说,这项研究开发的技术旨在提供一个具有相当大潜力的框架,将来应用于广泛的学科。研究生将接受培训,并积极参与这项研究。本项目旨在促进对沿两条平行轨道行波的数学理解:存在理论和稳定性理论。第一组活动涉及无界区域上大振幅行波的存在。虽然目前有许多工具可以在已知显式解的邻域内构造小幅度波,但对非微扰机制的了解要少得多。对于设置在无界域上的问题尤其如此,对于这些问题,紧凑性问题严重阻碍了可用的工具。这个项目将开发一种全局分叉理论机制,旨在利用对称性和单调性来克服这些障碍。然后,这个新的框架将被用来解决各种系统中的重要公开问题。具体地说,这些应用包括:(I)构造渠道中两相流体系统的大振幅钻孔解;(Ii)证明根据一般非紧对称群演化的大振幅行波的存在性,例如反应扩散方程的涡旋环解;以及(Iii)将早期工作中构造的一族大振幅孤立分层水波推广到内部停滞点之外。第二组项目将开发新的系统工具,用于诊断具有对称性的抽象哈密顿系统的旅行解的轨道稳定性或不稳定性。这项工作旨在放宽现有理论中的关键假设,以便更直接地应用于高度非线性的系统,如那些控制水波的系统。利用这一机制,计划(I)证明受限于通道的两相系统中内波的不稳定性,以及(Ii)给出新的系统地证明Korteweg?de Vries孤子的稳定性和不稳定性。此外,对于点涡流的水波问题,将提供Hadamard意义下的局部适定性理论。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Stability of Solitary Water Waves with a Point Vortex
具有点涡的孤立水波的稳定性
On the Existence and Instability of Solitary Water Waves with a Finite Dipole
有限偶极子孤立水波的存在性和不稳定性
Orbital Stability of Internal Waves
内波的轨道稳定性
Large-Amplitude Solitary Waves in Two-Layer Density Stratified Water
两层密度分层水中的大振幅孤立波
Broadening Global Families of Anti-Plane Shear Equilibria
  • DOI:
    10.1137/21m1392838
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Hogancamp
  • 通讯作者:
    T. Hogancamp
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samuel Walsh其他文献

Vortex-carrying solitary gravity waves of large amplitude
携带涡流的大振幅孤立重力波
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Chen;Kristoffer Varholm;Samuel Walsh;Miles H. Wheeler
  • 通讯作者:
    Miles H. Wheeler
Stratified Steady Periodic Water Waves
  • DOI:
    10.1137/080721583
  • 发表时间:
    2008-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Samuel Walsh
  • 通讯作者:
    Samuel Walsh
Some criteria for the symmetry of stratified water waves
分层水波对称性的一些准则
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Samuel Walsh
  • 通讯作者:
    Samuel Walsh
Passive acoustic feeders as a tool to assess feed response and growth in shrimp pond production
被动声学喂食器作为评估虾池生产中饲料反应和生长的工具
  • DOI:
    10.1007/s10499-023-01053-3
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    João Reis;A. Hussain;Alex Weldon;Samuel Walsh;W. Stites;M. Rhodes;D. Davis
  • 通讯作者:
    D. Davis
Effects of fishmeal replacement, attractants, and taurine removal on juvenile and sub-adult Red Snapper (Lutjanus campechanus)
鱼粉替代、引诱剂和牛磺酸去除对幼鱼和亚成体红鲷鱼 (Lutjanus Campechanus) 的影响
  • DOI:
    10.1016/j.aquaculture.2021.737054
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Samuel Walsh;Robert P. Davis;Alex Weldon;João Reis;W. Stites;M. Rhodes;L. Ibarra;T. Bruce;D. Davis
  • 通讯作者:
    D. Davis

Samuel Walsh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samuel Walsh', 18)}}的其他基金

Non-Perturbative Interfacial Waves
非微扰界面波
  • 批准号:
    2306243
  • 财政年份:
    2023
  • 资助金额:
    $ 18.02万
  • 项目类别:
    Standard Grant
Midwestern Conference on Partial Differential Equations, Dynamical Systems, and Applications
中西部偏微分方程、动力系统和应用会议
  • 批准号:
    1844731
  • 财政年份:
    2019
  • 资助金额:
    $ 18.02万
  • 项目类别:
    Standard Grant
KUMU Conference on PDE, Dynamical Systems, and Applications
KUMU 偏微分方程、动力系统和应用会议
  • 批准号:
    1549934
  • 财政年份:
    2016
  • 资助金额:
    $ 18.02万
  • 项目类别:
    Standard Grant
Existence, Stability, and Qualitative Theory of Traveling Water Waves
行进水波的存在性、稳定性和定性理论
  • 批准号:
    1514910
  • 财政年份:
    2015
  • 资助金额:
    $ 18.02万
  • 项目类别:
    Continuing Grant

相似海外基金

SHINE: Solar Energetic Particles Mediating Interplanetary Shocks Close to the Sun
闪耀:太阳高能粒子介导靠近太阳的行星际激波
  • 批准号:
    2401162
  • 财政年份:
    2024
  • 资助金额:
    $ 18.02万
  • 项目类别:
    Continuing Grant
Resilience of pollinators in a changing world: impact of developmental environment on metabolism and energetic budgets in social and solitary bees
不断变化的世界中授粉媒介的复原力:发育环境对群居和独居蜜蜂新陈代谢和能量预算的影响
  • 批准号:
    BB/X016641/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.02万
  • 项目类别:
    Research Grant
The Elusive Sources of Solar Energetic Particles
太阳能粒子的难以捉摸的来源
  • 批准号:
    ST/X003787/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.02万
  • 项目类别:
    Fellowship
Creation of high energetic ionic liquid propellants for small satellites based on reaction analysis
基于反应分析的小卫星高能离子液体推进剂的研制
  • 批准号:
    23K04239
  • 财政年份:
    2023
  • 资助金额:
    $ 18.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Simulations and multi-vantage-point observations of solar flare energetic electrons
太阳耀斑高能电子的模拟和多角度观测
  • 批准号:
    2888138
  • 财政年份:
    2023
  • 资助金额:
    $ 18.02万
  • 项目类别:
    Studentship
Doctoral Dissertation Research: Maternal Energetic Strategies During Human Pregnancy
博士论文研究:人类怀孕期间的母亲能量策略
  • 批准号:
    2316583
  • 财政年份:
    2023
  • 资助金额:
    $ 18.02万
  • 项目类别:
    Standard Grant
Multispacecraft Study of the Spatio-Temporal Variability of Solar Energetic Particles (SEP) Profiles in the Inner Heliosphere
内日光层太阳高能粒子 (SEP) 剖面时空变化的多航天器研究
  • 批准号:
    2325313
  • 财政年份:
    2023
  • 资助金额:
    $ 18.02万
  • 项目类别:
    Standard Grant
REU Site: Advanced Technologies for HYpersonic, Propulsive, Energetic and Reusable Platforms (HYPER)
REU 网站:超音速、推进、充满活力和可重复使用平台的先进技术 (HYPER)
  • 批准号:
    2244324
  • 财政年份:
    2023
  • 资助金额:
    $ 18.02万
  • 项目类别:
    Standard Grant
SHINE: Understanding the Impact of Solar Energetic Particles and Forbush Decreases on the Global Electric Circuit
SHINE:了解太阳能高能粒子和福布什减少对全球电路的影响
  • 批准号:
    2301365
  • 财政年份:
    2023
  • 资助金额:
    $ 18.02万
  • 项目类别:
    Continuing Grant
REU Site: Intelligent Energetic Systems Engineering (INTENSE) REU
REU 站点:智能能源系统工程 (INTENSE) REU
  • 批准号:
    2244129
  • 财政年份:
    2023
  • 资助金额:
    $ 18.02万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了