Midwestern Conference on Partial Differential Equations, Dynamical Systems, and Applications
中西部偏微分方程、动力系统和应用会议
基本信息
- 批准号:1844731
- 负责人:
- 金额:$ 1.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award will provide support for participants, especially graduate students, junior researchers, women and mathematicians from under-represented groups in the sciences, to attend the second regional conference "KUMUNU Conference on PDE, Dynamical Systems and Applications" to be held in Columbia, Missouri on April 27-28th, 2019. The meeting is organized jointly by the Departments of Mathematics at the University of Missouri-Columbia, the University of Kansas in Lawrence, and the University of Nebraska-Lincoln. The conference will showcase recent advances and facilitate exchange of ideas in partial differential equations and dynamics of complex systems. Many basic first principles in nature take the form of conservation (or balance) laws for quantities that vary in space and time, and these laws lead naturally to partial differential equations (PDE). PDE are therefore encountered in nearly all areas of science; they describe wave motion, diffusion, deformation, mixing, pattern formation, and many other phenomena. Specific applications of current interest include climate modeling, water waves, electrodynamics phenomena in complex media, and neuroscience. While participants are clustered in the Midwestern and Southern states near Missouri, Kansas, and Nebraska, many researchers working at institutions elsewhere in the US will be included. Early career mathematicians will be given an opportunity to present their work to gain recognition and invaluable feedback. For the first time this year, KUMUNU will also feature a mini-course consisting of a series of three lectures to be given by Bjorn Sandstede (Brown). The conference website is http://faculty.missouri.edu/~walshsa/kumunu2019/Many of the complex nonlinear problems governed by PDE can be reframed as dynamical systems posed on infinite-dimensional spaces. This strategy has proved to be effective, and it certainly shows tremendous promise as a means to attack a host of open problems in nonlinear science. To realize this promise, a strong and continuing collaboration between the PDE and dynamics communities is essential. The goals of the KUMUNU Conference are to support and facilitate this collaboration. The major themes of this year's meeting are as follows: applications of dynamical system techniques to fluid mechanics and water waves; dynamics of dispersive PDE; and spatio-temporal structures. Each of these topics has generated a great deal of recent activity. The KUMUNU Conference will help to advance these efforts, particularly at regional institutions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项将为参与者提供支持,特别是研究生,初级研究人员,妇女和科学代表性不足的群体的数学家,参加将于2019年4月27日至28日在密苏里州哥伦比亚举行的第二次区域会议“KUMUU PDE,动力系统和应用会议”。这次会议是由密苏里-哥伦比亚大学数学系、劳伦斯的堪萨斯大学和内布拉斯加-林肯大学联合组织的。会议将展示最新进展,促进偏微分方程和复杂系统动力学方面的思想交流。自然界中许多基本的第一性原理都以守恒(或平衡)定律的形式出现,这些定律自然地导致了偏微分方程(PDE)。因此,偏微分方程在几乎所有的科学领域都会遇到;它们描述波动、扩散、变形、混合、图案形成和许多其他现象。当前感兴趣的具体应用包括气候建模,水波,复杂介质中的电动力学现象和神经科学。虽然参与者聚集在靠近密苏里州、堪萨斯和内布拉斯加州的中西部和南部各州,但许多在美国其他地方机构工作的研究人员也将被纳入其中。早期职业数学家将有机会展示他们的工作,以获得认可和宝贵的反馈。今年,KUMUU还将首次推出一个小型课程,由Bjorn Sandstede(布朗)提供的一系列三个讲座组成。 该会议的网站是http://faculty.missouri.edu/~walshsa/kumunu2019/Many的复杂的非线性问题所管辖的偏微分方程可以重新定义为动力系统构成的无限维空间。这一策略已被证明是有效的,而且作为解决非线性科学中许多开放性问题的一种手段,它无疑显示出巨大的前景。为了实现这一承诺,PDE和dynamics社区之间强有力的持续合作至关重要。KUMUU会议的目标是支持和促进这种合作。今年会议的主要主题如下:动力系统技术在流体力学和水波中的应用;色散偏微分方程的动力学;以及时空结构。这些主题中的每一个最近都产生了大量的活动。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samuel Walsh其他文献
Vortex-carrying solitary gravity waves of large amplitude
携带涡流的大振幅孤立重力波
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
R. Chen;Kristoffer Varholm;Samuel Walsh;Miles H. Wheeler - 通讯作者:
Miles H. Wheeler
Stratified Steady Periodic Water Waves
- DOI:
10.1137/080721583 - 发表时间:
2008-07 - 期刊:
- 影响因子:0
- 作者:
Samuel Walsh - 通讯作者:
Samuel Walsh
Some criteria for the symmetry of stratified water waves
分层水波对称性的一些准则
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Samuel Walsh - 通讯作者:
Samuel Walsh
Passive acoustic feeders as a tool to assess feed response and growth in shrimp pond production
被动声学喂食器作为评估虾池生产中饲料反应和生长的工具
- DOI:
10.1007/s10499-023-01053-3 - 发表时间:
2023 - 期刊:
- 影响因子:2.9
- 作者:
João Reis;A. Hussain;Alex Weldon;Samuel Walsh;W. Stites;M. Rhodes;D. Davis - 通讯作者:
D. Davis
Effects of fishmeal replacement, attractants, and taurine removal on juvenile and sub-adult Red Snapper (Lutjanus campechanus)
鱼粉替代、引诱剂和牛磺酸去除对幼鱼和亚成体红鲷鱼 (Lutjanus Campechanus) 的影响
- DOI:
10.1016/j.aquaculture.2021.737054 - 发表时间:
2021 - 期刊:
- 影响因子:4.5
- 作者:
Samuel Walsh;Robert P. Davis;Alex Weldon;João Reis;W. Stites;M. Rhodes;L. Ibarra;T. Bruce;D. Davis - 通讯作者:
D. Davis
Samuel Walsh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samuel Walsh', 18)}}的其他基金
Existence and Energetic Stability of Traveling Waves in the Presence of Symmetry
对称性下行波的存在性和能量稳定性
- 批准号:
1812436 - 财政年份:2018
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
KUMU Conference on PDE, Dynamical Systems, and Applications
KUMU 偏微分方程、动力系统和应用会议
- 批准号:
1549934 - 财政年份:2016
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
Existence, Stability, and Qualitative Theory of Traveling Water Waves
行进水波的存在性、稳定性和定性理论
- 批准号:
1514910 - 财政年份:2015
- 资助金额:
$ 1.6万 - 项目类别:
Continuing Grant
相似海外基金
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
- 批准号:
2346780 - 财政年份:2024
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
International Conference on Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory
调和分析、偏微分方程和几何测度理论国际会议
- 批准号:
2247067 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
Conference: Potential Theory Workshop: Intersections in Harmonic Analysis, Partial Differential Equations and Probability
会议:势理论研讨会:调和分析、偏微分方程和概率的交集
- 批准号:
2324706 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
CBMS Conference: Deep Learning and Numerical Partial Differential Equations
CBMS 会议:深度学习和数值偏微分方程
- 批准号:
2228010 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
Seventh Annual KUMUNU-ISU Conference in Partial Differential Equations, Dynamical Systems, and Applications
第七届 KUMUNU-ISU 偏微分方程、动力系统和应用年度会议
- 批准号:
2230000 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
The Kansas-Missouri-Nebraska-Iowa State Conference in Partial Differential Equations, Dynamical Systems, and Applications
堪萨斯州-密苏里州-内布拉斯加州-爱荷华州偏微分方程、动力系统和应用会议
- 批准号:
1948942 - 财政年份:2020
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
CBMS Conference: Gaussian Random Fields, Fractals, Stochastic Partial Differential Equations, and Extremes
CBMS 会议:高斯随机场、分形、随机偏微分方程和极值
- 批准号:
1933330 - 财政年份:2019
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
CBMS Conference: Analysis, Geometry, and Partial Differential Equations in a Lower-Dimensional World
CBMS 会议:低维世界中的分析、几何和偏微分方程
- 批准号:
1933361 - 财政年份:2019
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
4th Annual KUMUNU Conference in Partial Differential Equations, Dynamical Systems and Applications
第四届偏微分方程、动力系统和应用 KUMUNU 年度会议
- 批准号:
1753332 - 财政年份:2018
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant