KUMU Conference on PDE, Dynamical Systems, and Applications

KUMU 偏微分方程、动力系统和应用会议

基本信息

  • 批准号:
    1549934
  • 负责人:
  • 金额:
    $ 1.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-03-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

This award will provide support for participants, especially graduate students, junior researchers, women and mathematicians from under-represented groups in the sciences, to attend the second regional conference "KUMU Conference in PDE, Dynamical Systems and Applications" to be held in Columbia, Missouri on of April 23-24, 2016. The meeting is organized jointly by the Departments of Mathematics at the University of Missouri-Columbia and the University of Kansas in Lawrence. The conference will showcase recent advances and facilitate exchange of ideas in partial differential equations (PDEs) and dynamics of complex systems. Many basic first principles in nature take the form of conservation (or balance) laws for quantities that vary in space and time, and these laws lead naturally to partial differential equations. PDEs are therefore encountered in nearly all areas of science; they describe wave motion, diffusion, deformation, mixing, pattern formation, and many other phenomena. Specific application of current interest include climate modeling, water waves, electrodynamics phenomena in complex media, and neuroscience. While participants are clustered in the Midwestern and Southern states near Missouri and Kansas, many researchers working at institutions elsewhere in the US will be included. Early career mathematicians will be given an opportunity to present their work to gain recognition and invaluable feedback. The conference website is http://faculty.missouri.edu/~walshsa/kumu2016/Many of the complex nonlinear problems governed by PDEs can be reframed as dynamical systems posed on infinite-dimensional spaces. This strategy has proved to be effective, and it certainly shows tremendous promise as a means to attack a host of open problems in nonlinear science. To realize this promise, a strong and continuing collaboration between the PDE and dynamics communities is essential. The goals of the KUMU Conference are to support and facilitate this collaboration. The major themes of this year's meeting are as follows: applications of dynamical system techniques to fluid mechanics and water waves; dynamics of dispersive PDEs; and index formulas in the study of stability of nonlinear waves. Each of these topics has generated a great deal of recent activity. The KUMU Conference will help to advance this research.
该奖项将为参与者提供支持,特别是研究生,初级研究人员,妇女和科学代表性不足的群体的数学家,参加将于2016年4月23日至24日在密苏里州哥伦比亚举行的第二次区域会议“KUMU PDE,动态系统和应用会议”。 这次会议是由密苏里-哥伦比亚大学数学系和位于劳伦斯的堪萨斯大学联合组织的。 会议将展示最新进展,并促进偏微分方程(PDE)和复杂系统动力学方面的思想交流。自然界中许多基本的第一性原理都采取了在空间和时间上变化的量的守恒(或平衡)定律的形式,这些定律自然会导致偏微分方程。因此,偏微分方程在几乎所有的科学领域都会遇到;它们描述波动、扩散、变形、混合、图案形成和许多其他现象。当前感兴趣的具体应用包括气候建模,水波,复杂介质中的电动力学现象和神经科学。虽然参与者集中在中西部和南部靠近密苏里州和堪萨斯的州,但许多在美国其他地方机构工作的研究人员也将包括在内。早期职业数学家将有机会展示他们的工作,以获得认可和宝贵的反馈。该会议的网站是http://faculty.missouri.edu/~walshsa/kumu2016/Many的复杂的非线性问题所管辖的偏微分方程可以重新定义为动力系统构成的无限维空间。 这一策略已被证明是有效的,而且作为解决非线性科学中许多开放性问题的一种手段,它无疑显示出巨大的前景。为了实现这一承诺,PDE和dynamics社区之间强有力的持续合作至关重要。KUMU会议的目标是支持和促进这种合作。今年会议的主题包括:动力系统技术在流体力学和水波中的应用;色散偏微分方程的动力学;以及非线性波稳定性研究中的指数公式。 这些主题中的每一个最近都产生了大量的活动。 KUMU会议将有助于推进这项研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samuel Walsh其他文献

Vortex-carrying solitary gravity waves of large amplitude
携带涡流的大振幅孤立重力波
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Chen;Kristoffer Varholm;Samuel Walsh;Miles H. Wheeler
  • 通讯作者:
    Miles H. Wheeler
Stratified Steady Periodic Water Waves
  • DOI:
    10.1137/080721583
  • 发表时间:
    2008-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Samuel Walsh
  • 通讯作者:
    Samuel Walsh
Some criteria for the symmetry of stratified water waves
分层水波对称性的一些准则
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Samuel Walsh
  • 通讯作者:
    Samuel Walsh
Passive acoustic feeders as a tool to assess feed response and growth in shrimp pond production
被动声学喂食器作为评估虾池生产中饲料反应和生长的工具
  • DOI:
    10.1007/s10499-023-01053-3
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    João Reis;A. Hussain;Alex Weldon;Samuel Walsh;W. Stites;M. Rhodes;D. Davis
  • 通讯作者:
    D. Davis
Effects of fishmeal replacement, attractants, and taurine removal on juvenile and sub-adult Red Snapper (Lutjanus campechanus)
鱼粉替代、引诱剂和牛磺酸去除对幼鱼和亚成体红鲷鱼 (Lutjanus Campechanus) 的影响
  • DOI:
    10.1016/j.aquaculture.2021.737054
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Samuel Walsh;Robert P. Davis;Alex Weldon;João Reis;W. Stites;M. Rhodes;L. Ibarra;T. Bruce;D. Davis
  • 通讯作者:
    D. Davis

Samuel Walsh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samuel Walsh', 18)}}的其他基金

Non-Perturbative Interfacial Waves
非微扰界面波
  • 批准号:
    2306243
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
Midwestern Conference on Partial Differential Equations, Dynamical Systems, and Applications
中西部偏微分方程、动力系统和应用会议
  • 批准号:
    1844731
  • 财政年份:
    2019
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
Existence and Energetic Stability of Traveling Waves in the Presence of Symmetry
对称性下行波的存在性和能量稳定性
  • 批准号:
    1812436
  • 财政年份:
    2018
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
Existence, Stability, and Qualitative Theory of Traveling Water Waves
行进水波的存在性、稳定性和定性理论
  • 批准号:
    1514910
  • 财政年份:
    2015
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Continuing Grant

相似海外基金

Conference: 2024 KUMUNU-ISU Conference on PDE, Dynamical Systems and Applications
会议:2024 年 KUMUNU-ISU 偏微分方程、动力系统和应用会议
  • 批准号:
    2349508
  • 财政年份:
    2024
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
Conference: PDE in Moab: Advances in Theory and Application
会议:摩押偏微分方程:理论与应用的进展
  • 批准号:
    2350128
  • 财政年份:
    2024
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
The Kansas-Missouri-Nebraska (KUMUNU) Conference in PDE, Dynamical Systems and Applications
堪萨斯-密苏里-内布拉斯加州 (KUMUNU) 偏微分方程、动力系统和应用会议
  • 批准号:
    1658793
  • 财政年份:
    2017
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
KUMU PDE Conference Proposal
KUMU PDE 会议提案
  • 批准号:
    1500607
  • 财政年份:
    2015
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
International Conference on Inverse Problems and PDE Control
反问题和偏微分方程控制国际会议
  • 批准号:
    1201356
  • 财政年份:
    2012
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
Proposal for a Five-Day Conference: Challenges for Nonlinear PDE and Analysis
为期五天的会议提案:非线性偏微分方程和分析的挑战
  • 批准号:
    1100754
  • 财政年份:
    2011
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
Waves and Spectra: Analysis/PDE Conference.
波和谱:分析/偏微分方程会议。
  • 批准号:
    1101551
  • 财政年份:
    2011
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
Conference on Analysis, Modeling and Computation of PDE and Multiphase Flow; Stony Brook, NY
偏微分方程和多相流分析、建模和计算会议;
  • 批准号:
    0422640
  • 财政年份:
    2004
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
Harmonic Analysis and PDE Mini-Conference
调和分析与偏微分方程小型会议
  • 批准号:
    9986086
  • 财政年份:
    1999
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
Travel to Attend: Pde Software Modules, Interfaces and Systems Conference; Soderkoping, Sweden; August 22-26, 1983
前往参加:Pde 软件模块、接口和系统会议;
  • 批准号:
    8312419
  • 财政年份:
    1983
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了