Non-Perturbative Interfacial Waves
非微扰界面波
基本信息
- 批准号:2306243
- 负责人:
- 金额:$ 26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Interfacial waves are waves that propagate along a boundary separating two substances or regions. They are found throughout nature, ranging from internal waves in the ocean to spreading contagions in biology and defect patterns in material science. Much is now known about waves that are perturbative in some sense. For instance, if the interface is not greatly disturbed, its motion can be well predicted using simpler linear or weakly nonlinear models. However, many important phenomena fall far outside this category. As one example, following the 2022 volcanic eruption in Tonga, tsunami-like waves were observed moving much faster than linear theory predicts in shallow water and even seemed to amplify in deep water. This project aims to deepen the mathematical understanding of these and similar non-perturbative waves for which the underlying systems exhibit intrinsically nonlinear dynamics, surface singularities, or resonance phenomena. Progress in this direction will be benefit the larger mathematics and science communities, and society more broadly as they will bring predictive capabilities improvements and ultimately help mitigate future disasters. The project will provide research training opportunities for undergraduate and graduate students.Internal bores are fronts that propagate along pycnoclines in stratified bodies of water. They play a geophysically significant role in mixing, energy transport, and oceanic circulation. Using global bifurcation theory and free boundary elliptic regularity theory methods, this project seeks to prove the existence of overhanging internal gravity waves and verify a conjecture of von Karman regarding the existence and form of exact gravity currents. Another objective concerns the time evolution of interfacial hydrodynamic waves. As part of this project, the investigator will use techniques from infinite-dimensional Hamiltonian systems to characterize the spectral stability of multimodal internal capillary-gravity solitary waves, and prove that solitary waves with strong surface tension are orbitally unstable with respect to transverse perturbations. Understanding meteotsunamis --- atmospherically generated tsunamis --- created by the Tonga eruption is another central objective. One prominent explanation for their formation is based on three-wave resonance in a two-phase lightly compressible Euler system. This project will give the first rigorous treatment to this theory by constructing steady axisymmetric three-dimensional solutions as models for the initial atmospheric shockwaves and exact three-dimensional doubly-periodic steady solutions for exhibiting the resonant triad. The final aim of the project concerns localized vortical structures carried by waves. A hollow vortex is a bounded region of constant pressure encircled by a vortex sheet and suspended inside a perfect fluid; their existence and stability in the plane have been studied since the 19th century. The investigator will construct exact water waves with a submerged hollow vortex and ascertain their orbital stability, giving insight into wave-vortex interaction.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
界面波是沿分隔两种物质或区域的边界传播的波。它们在自然界中随处可见,从海洋中的内波到生物学中的传播传染,再到材料科学中的缺陷模式。从某种意义上说,现在人们对扰动波了解很多。例如,如果界面没有受到很大的干扰,则可以使用更简单的线性或弱非线性模型很好地预测其运动。然而,许多重要的现象远远超出了这一范畴。例如,在2022年汤加火山爆发之后,人们观察到海啸般的波浪在浅水区的移动速度比线性理论预测的要快得多,甚至在深水区似乎也会放大。该项目旨在加深对这些和类似的非摄动波的数学理解,这些波的底层系统表现出内在的非线性动力学,表面奇点或共振现象。这方面的进展将有利于更大的数学和科学界,以及更广泛的社会,因为它们将带来预测能力的提高,并最终有助于减轻未来的灾难。该项目将为本科生和研究生提供研究培训机会。内孔是在成层水体中沿斜斜线传播的锋面。它们在混合、能量输送和海洋环流中起着重要的地球物理作用。本项目利用全局分岔理论和自由边界椭圆正则性理论方法,证明了内悬重力波的存在性,验证了von Karman关于精确重力流存在和形式的猜想。另一个目标涉及界面水动力波的时间演化。作为该项目的一部分,研究者将使用来自无限维哈密顿系统的技术来表征多模态内部毛细管重力孤立波的谱稳定性,并证明具有强表面张力的孤立波相对于横向扰动是轨道不稳定的。了解汤加火山爆发引发的气象海啸(大气引发的海啸)是另一个中心目标。它们形成的一个突出的解释是基于两相轻可压缩欧拉系统中的三波共振。本项目将通过构建稳定轴对称三维解作为初始大气冲击波的模型和精确的三维双周期稳定解来展示共振三联征,从而首次对这一理论进行严格的处理。该项目的最终目的是关注由波浪携带的局部涡旋结构。空心涡是一个有界的恒压区域,被一个涡片包围,悬浮在完美流体中;自19世纪以来,人们一直在研究它们在飞机上的存在和稳定性。研究人员将构建具有水下空心涡的精确水波,并确定其轨道稳定性,从而深入了解波-涡相互作用。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samuel Walsh其他文献
Vortex-carrying solitary gravity waves of large amplitude
携带涡流的大振幅孤立重力波
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
R. Chen;Kristoffer Varholm;Samuel Walsh;Miles H. Wheeler - 通讯作者:
Miles H. Wheeler
Stratified Steady Periodic Water Waves
- DOI:
10.1137/080721583 - 发表时间:
2008-07 - 期刊:
- 影响因子:0
- 作者:
Samuel Walsh - 通讯作者:
Samuel Walsh
Some criteria for the symmetry of stratified water waves
分层水波对称性的一些准则
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Samuel Walsh - 通讯作者:
Samuel Walsh
Passive acoustic feeders as a tool to assess feed response and growth in shrimp pond production
被动声学喂食器作为评估虾池生产中饲料反应和生长的工具
- DOI:
10.1007/s10499-023-01053-3 - 发表时间:
2023 - 期刊:
- 影响因子:2.9
- 作者:
João Reis;A. Hussain;Alex Weldon;Samuel Walsh;W. Stites;M. Rhodes;D. Davis - 通讯作者:
D. Davis
Effects of fishmeal replacement, attractants, and taurine removal on juvenile and sub-adult Red Snapper (Lutjanus campechanus)
鱼粉替代、引诱剂和牛磺酸去除对幼鱼和亚成体红鲷鱼 (Lutjanus Campechanus) 的影响
- DOI:
10.1016/j.aquaculture.2021.737054 - 发表时间:
2021 - 期刊:
- 影响因子:4.5
- 作者:
Samuel Walsh;Robert P. Davis;Alex Weldon;João Reis;W. Stites;M. Rhodes;L. Ibarra;T. Bruce;D. Davis - 通讯作者:
D. Davis
Samuel Walsh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samuel Walsh', 18)}}的其他基金
Midwestern Conference on Partial Differential Equations, Dynamical Systems, and Applications
中西部偏微分方程、动力系统和应用会议
- 批准号:
1844731 - 财政年份:2019
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Existence and Energetic Stability of Traveling Waves in the Presence of Symmetry
对称性下行波的存在性和能量稳定性
- 批准号:
1812436 - 财政年份:2018
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
KUMU Conference on PDE, Dynamical Systems, and Applications
KUMU 偏微分方程、动力系统和应用会议
- 批准号:
1549934 - 财政年份:2016
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Existence, Stability, and Qualitative Theory of Traveling Water Waves
行进水波的存在性、稳定性和定性理论
- 批准号:
1514910 - 财政年份:2015
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
相似海外基金
Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
- 批准号:
EP/Z000106/1 - 财政年份:2024
- 资助金额:
$ 26万 - 项目类别:
Research Grant
Non-perturbative studies of electron-lattice interactions in quantum materials
量子材料中电子晶格相互作用的非微扰研究
- 批准号:
2401388 - 财政年份:2024
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Non-perturbative constraints on strongly interacting systems
强相互作用系统的非微扰约束
- 批准号:
2889469 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Studentship
Non-perturbative aspects of three-dimensional quantum gravity
三维量子引力的非微扰方面
- 批准号:
2882187 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Studentship
Taming Non-Perturbative Dynamics in High Energy Physics
驾驭高能物理中的非微扰动力学
- 批准号:
2310243 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Non-Perturbative Methods in Field Theory and Many-Body Physics
场论和多体物理中的非微扰方法
- 批准号:
2310283 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Non-perturbative dynamics of chiral gauge theories
手性规范理论的非微扰动力学
- 批准号:
23K03382 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-perturbative methods to quantum field theory and its applications to superstring theory
量子场论的非微扰方法及其在超弦理论中的应用
- 批准号:
22KJ2096 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Resurgence and non-perturbative phenomena in strongly coupled field theories
强耦合场论中的复兴和非微扰现象
- 批准号:
2890362 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Studentship
Non-Perturbative Analysis of Physical and Mathematical Models
物理和数学模型的非微扰分析
- 批准号:
2206241 - 财政年份:2022
- 资助金额:
$ 26万 - 项目类别:
Standard Grant