RUI: Compressive Sensing and Neuronal Network Structure-Function Relationships
RUI:压缩感知和神经网络结构-功能关系
基本信息
- 批准号:1812478
- 负责人:
- 金额:$ 14.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-15 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The human brain is a complex network of billions of neurons whose intricate connectivity largely determines perception and behavior. To understand brain function, it is therefore paramount to efficiently measure and analyze neuronal network architecture. However, measuring the connectivity of large neuronal networks remains a challenge both experimentally and theoretically. An often more tractable approach to reconstructing connectivity in complex networks is to instead measure the dynamics of neurons of interest, and then use mathematical approaches to infer the network connectivity. This project will utilize the widespread sparsity found in brain networks to develop an efficient mathematical framework for reconstructing neuronal connectivity from limited measurements of neuronal dynamics. Upon accurately recovering the architecture of neuronal networks, this project will investigate how the sparse structure of natural stimuli impacts the early development of neuronal connectivity and what functional implication this has in the encoding of diverse classes of sensory signals. Analyzing the neuronal dynamics that optimally encode network connectivity and stimulus information, this project will provide new insights into sensory processing and abnormal brain function. In formulating novel methodologies for processing dynamic network data, this project will inform advances in artificial intelligence and prosthetics. This work will actively involve undergraduate students in all phases of research, promoting interdisciplinary scientific collaboration and deepening the scope of applied mathematics education for a diverse spectrum of students.With the increasing prevalence of network models in the mathematical sciences, accurately measuring network structure and understanding its relationship with network function is of broad scientific importance. In neuroscience in particular, efficiently measuring large-scale brain connectivity and determining its impact on cognitive function is inherently challenging yet fundamental in characterizing the nature of computation in the brain. This project will formulate a novel framework for the reconstruction and characterization of neuronal connectivity by taking advantage of the widespread network sparsity found in the brain and utilizing recent advances in compressive-sensing (CS) theory. Key facets of the project are to: (1) develop a novel CS-based mean-field approach for efficiently reconstructing sparse connections in physiological neuronal networks based on underlying input-output mappings embedded in the nonlinear network dynamics; (2) analyze the role of the balanced network operating regime in CS reconstruction of recurrent network connectivity; (3) investigate the basis for structural motifs in the visual system through supervised learning of neuronal connectivity aimed at optimized compressive encoding of sparse visual stimuli; and (4) characterize the functional role of receptive field structure in the encoding of natural scenes through compressive network dynamics and the manifestation of related deficiencies in processing non-natural scenes, such as illusory images. This work will underline how the network dynamical regime impacts the inference of structural connectivity and network inputs from neuronal dynamics, improving the scale over which neuronal connectivity can be determined and providing novel insights into abnormal information processing in the brain.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人类大脑是一个由数十亿神经元组成的复杂网络,其错综复杂的连接在很大程度上决定了感知和行为。为了了解大脑功能,有效地测量和分析神经元网络结构至关重要。然而,测量大型神经元网络的连通性在实验和理论上都是一个挑战。在复杂网络中重建连通性的一种更容易处理的方法是测量感兴趣的神经元的动力学,然后使用数学方法来推断网络的连通性。该项目将利用大脑网络中广泛存在的稀疏性,开发一个有效的数学框架,用于从有限的神经元动力学测量中重建神经元连接。在准确地恢复神经元网络的架构后,该项目将研究自然刺激的稀疏结构如何影响神经元连接的早期发展,以及这在不同类别的感觉信号的编码中具有什么样的功能意义。通过分析对网络连接和刺激信息进行最佳编码的神经元动力学,该项目将为感官处理和异常脑功能提供新的见解。在制定处理动态网络数据的新方法时,该项目将为人工智能和假肢的进步提供信息。这项工作将积极地让本科生参与研究的各个阶段,促进跨学科的科学合作,并深化对不同学生的应用数学教育范围。随着网络模型在数学科学中的日益普及,准确测量网络结构并了解其与网络功能的关系具有广泛的科学重要性。特别是在神经科学中,有效地测量大规模大脑连接并确定其对认知功能的影响本质上是具有挑战性的,但对于表征大脑中计算的性质至关重要。该项目将通过利用大脑中广泛存在的网络稀疏性并利用压缩感知(CS)理论的最新进展,制定一个新的神经元连接重建和表征框架。 该项目的关键方面是:(1)开发一种新的基于CS的平均场方法,用于基于嵌入非线性网络动力学中的潜在输入输出映射有效地重建生理神经元网络中的稀疏连接;(2)分析平衡网络操作机制在CS重建递归网络连接中的作用;(3)通过对神经元连接的监督学习,旨在优化稀疏视觉刺激的压缩编码,研究视觉系统中结构基序的基础;(4)通过压缩网络动力学表征感受野结构在自然场景编码中的功能作用,以及相关缺陷在加工非自然场景,如虚幻的图像。这项工作将强调网络动态机制如何影响结构连接和神经元动力学网络输入的推断,提高了神经元连接性的测定范围,并为大脑中异常信息处理提供了新的见解。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查进行评估,被认为值得支持的搜索.
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Neural network learning of improved compressive sensing sampling and receptive field structure
- DOI:10.1016/j.neucom.2021.05.061
- 发表时间:2021-06-07
- 期刊:
- 影响因子:6
- 作者:Barranca, Victor J.
- 通讯作者:Barranca, Victor J.
A computational study of the role of spatial receptive field structure in processing natural and non-natural scenes
- DOI:10.1016/j.jtbi.2018.06.011
- 发表时间:2018-10-07
- 期刊:
- 影响因子:2
- 作者:Barranca, Victor J.;Zhu, Xiuqi George
- 通讯作者:Zhu, Xiuqi George
The impact of spike-frequency adaptation on balanced network dynamics
- DOI:10.1007/s11571-018-9504-2
- 发表时间:2019-02-01
- 期刊:
- 影响因子:3.7
- 作者:Barranca, Victor J.;Huang, Han;Li, Sida
- 通讯作者:Li, Sida
Data-Driven Reconstruction and Encoding of Sparse Stimuli across Convergent Sensory Layers from Downstream Neuronal Network Dynamics
- DOI:10.1137/21m1403114
- 发表时间:2021-01-01
- 期刊:
- 影响因子:2.1
- 作者:Barranca, Victor J.;Hu, Yolanda;Xuan, Alex
- 通讯作者:Xuan, Alex
Network structure and input integration in competing firing rate models for decision-making
- DOI:10.1007/s10827-018-0708-6
- 发表时间:2019-04-01
- 期刊:
- 影响因子:1.2
- 作者:Barranca, Victor J.;Huang, Han;Kawakita, Genji
- 通讯作者:Kawakita, Genji
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Victor Barranca其他文献
Victor Barranca的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于Compressive sensing理论的单探测器太赫兹成像技术
- 批准号:60977009
- 批准年份:2009
- 资助金额:32.0 万元
- 项目类别:面上项目
Compressive Sensing 理论及信号最佳稀疏分解方法研究
- 批准号:60776795
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:联合基金项目
相似海外基金
Applications of Infinite Dimensional Compressive Sensing to Multi-Dimensional Analog Images using Machine Learning to Enhance Results
利用机器学习将无限维压缩感知应用于多维模拟图像以增强结果
- 批准号:
2889834 - 财政年份:2023
- 资助金额:
$ 14.03万 - 项目类别:
Studentship
Hyperspectral Compressive Sensing Spectrometer for Adult Neuromonitoring in Cardiac Surgery
用于成人心脏手术神经监测的高光谱压缩传感光谱仪
- 批准号:
DH-2022-00545 - 财政年份:2022
- 资助金额:
$ 14.03万 - 项目类别:
Discovery Horizons
Compressive sensing-based sparse transducers for ultrasound imaging
用于超声成像的基于压缩传感的稀疏换能器
- 批准号:
RGPIN-2020-07053 - 财政年份:2022
- 资助金额:
$ 14.03万 - 项目类别:
Discovery Grants Program - Individual
Synergistic Inverse Problems Omni-Solver for Expeditious High Quality Multimodal Cardiovascular MRI via Deep Compressive Sensing and Data Coalescing
协同逆问题 Omni-Solver 通过深度压缩传感和数据合并实现快速高质量多模态心血管 MRI
- 批准号:
MR/V023799/1 - 财政年份:2021
- 资助金额:
$ 14.03万 - 项目类别:
Fellowship
Optimized Sampling Approaches for Compressive Sensing in Multi-Dimensional Datastreams
多维数据流中压缩感知的优化采样方法
- 批准号:
2599531 - 财政年份:2021
- 资助金额:
$ 14.03万 - 项目类别:
Studentship
Compressive sensing-based sparse transducers for ultrasound imaging
用于超声成像的基于压缩传感的稀疏换能器
- 批准号:
RGPIN-2020-07053 - 财政年份:2021
- 资助金额:
$ 14.03万 - 项目类别:
Discovery Grants Program - Individual
Extreme volumetric imaging using single-shot optical tomography with compressive sensing
使用具有压缩传感功能的单次光学断层扫描进行极限体积成像
- 批准号:
EP/V048996/1 - 财政年份:2021
- 资助金额:
$ 14.03万 - 项目类别:
Research Grant
High-resolution and high-throughput Raman spectroscopic imaging using structured illumination and compressive sensing
使用结构照明和压缩传感的高分辨率和高通量拉曼光谱成像
- 批准号:
20K04188 - 财政年份:2020
- 资助金额:
$ 14.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Compressive sensing-based sparse transducers for ultrasound imaging
用于超声成像的基于压缩传感的稀疏换能器
- 批准号:
RGPIN-2020-07053 - 财政年份:2020
- 资助金额:
$ 14.03万 - 项目类别:
Discovery Grants Program - Individual
Compact omnidirectional lensless camera by sparse image sensors and compressive sensing
采用稀疏图像传感器和压缩传感的紧凑型全向无镜头相机
- 批准号:
20K21808 - 财政年份:2020
- 资助金额:
$ 14.03万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)