SHF: Small: Natural GUI-Based Testing of Mobile Apps via Mining Software Repositories

SHF:小型:通过挖掘软件存储库对移动应用程序进行基于 GUI 的自然测试

基本信息

  • 批准号:
    1815186
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-10-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

Mobile devices have become an integral, ubiquitous part of modern society. The popularity of smartphones and tablets is largely due to the success of mobile software, colloquially referred to as "apps", that enable users to carry out a wide range of computing tasks in an intuitive and convenient manner. The burgeoning mobile app market is fueled by rapidly evolving performant hardware and software platforms that support increasingly complex functionality. In order for apps to achieve success in marketplaces such as Apple's App Store or Google Play, it is imperative that they function as intended and thus must be well tested. However, the unique aspects of mobile apps that make them popular, such as their touch-based interfaces, rapidly evolving platforms, and contextual features such as sensors, make them difficult to test effectively and efficiently. Additionally, as the marketplace for mobile apps matures, developers must ensure that their apps function well across a myriad of devices while addressing feedback from an increasingly large user base through app store reviews. These challenges illustrate that mobile developers require practical automated support to ensure that their apps are adequately tested. This research project aims to design, and thoroughly validate an automated testing approach for mobile apps that overcomes the challenges listed above. In turn, it is anticipated that the techniques enabled by this research will contribute to better-tested, higher quality mobile applications, benefiting both our society that increasingly depends on smartphone apps and the developers and teams that create them. To solve these fundamental challenges, this project aims to develop an automated testing framework that combines novel statistical representations of mobile apps and information gleaned via mining software repositories techniques to efficiently generate practical, effective test scenarios. More specifically, a novel testing framework, coined as T+, will be developed. T+ is rooted in a probabilistic model-based representation of mobile apps. This model will enable a transformative automated approach for generating feasible test cases that are decoupled from low level events, can be executed on different devices, and support multiple testing goals and adequacy criteria. Additionally, this research work will define and develop monitoring mechanisms for identifying change- and fault- prone APIs in underlying platform and third-party libraries, as well as informative reviews. Incorporation of this information into the statistical model of T+ will allow for the generation and prioritization of test cases covering these APIs and reviews. Broader impacts of this work will reside in (1) improving the state of the practice in testing mobile apps, where difficulties are faced in ensuring that apps are adequately tested with respect to changing platforms, APIs, reviews, and numerous devices; (2) demonstrating improved testing practices with industry partners, which will be documented as best practices for other development organizations and test centers to adopt; (3) developing educational course content and piloting it in the classroom as part of this research project; and (4) actively involving underrepresented categories of students in this research program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
移动设备已经成为现代社会不可或缺的、无处不在的一部分。智能手机和平板电脑的流行在很大程度上要归功于移动软件的成功,这些软件通俗地被称为“应用”,使用户能够以直观和方便的方式执行广泛的计算任务。快速发展的高性能硬件和软件平台支持日益复杂的功能,推动了蓬勃发展的移动应用市场。为了让应用程序在苹果的App Store或Google Play等市场上取得成功,它们的功能必须达到预期,因此必须经过良好的测试。然而,移动应用程序受欢迎的独特方面,如基于触摸的界面、快速发展的平台和传感器等上下文功能,使得它们很难进行有效和高效的测试。此外,随着移动应用市场的成熟,开发者必须确保他们的应用在各种设备上都能很好地运行,同时通过应用商店评论来处理越来越多的用户群的反馈。这些挑战表明,移动开发人员需要实用的自动化支持,以确保他们的应用程序经过充分测试。这项研究项目旨在设计并彻底验证一种针对移动应用程序的自动化测试方法,以克服上面列出的挑战。反过来,预计这项研究带来的技术将有助于更好地测试、更高质量的移动应用程序,使我们越来越依赖智能手机应用程序的社会以及开发这些应用程序的开发人员和团队都受益。为了解决这些根本挑战,该项目旨在开发一个自动化测试框架,将移动应用程序的新颖统计表示法与通过挖掘软件库技术收集的信息相结合,以高效地生成实用、有效的测试场景。更具体地说,将开发一种新的测试框架,称为T+。T+植根于移动应用程序的基于概率模型的表示。该模型将支持一种变革性的自动化方法来生成可行的测试用例,这些测试用例与底层事件分离,可以在不同的设备上执行,并支持多个测试目标和充分性标准。此外,这项研究工作将定义和开发监测机制,以确定基础平台和第三方库中容易发生变化和故障的API,以及提供信息的审查。将这些信息合并到T+的统计模型中,将允许生成涵盖这些API和审查的测试用例并确定其优先级。这项工作的更广泛影响将在于:(1)改善移动应用程序测试实践的状况,在确保应用程序针对变化的平台、API、评论和众多设备进行充分测试方面面临困难;(2)与行业合作伙伴展示改进的测试实践,这将被记录为其他开发组织和测试中心采用的最佳实践;(3)开发教育课程内容,并将其作为本研究项目的一部分在课堂上进行试点;这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Machine Learning-Based Prototyping of Graphical User Interfaces for Mobile Apps
  • DOI:
    10.1109/tse.2018.2844788
  • 发表时间:
    2020-02-01
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Moran, Kevin;Bernal-Cardenas, Carlos;Poshyvanyk, Denys
  • 通讯作者:
    Poshyvanyk, Denys
An Empirical Study on Learning Bug-Fixing Patches in the Wild via Neural Machine Translation
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Denys Poshyvanyk其他文献

MASC: A Tool for Mutation-Based Evaluation of Static Crypto-API Misuse Detectors
MASC:基于突变的静态加密 API 滥用检测器评估工具

Denys Poshyvanyk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Denys Poshyvanyk', 18)}}的其他基金

Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2311469
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
DASS: Enabling Comprehensive and Interactive Open Source Software License Compliance
DASS:实现全面、交互式的开源软件许可证合规性
  • 批准号:
    2217733
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
SHF: Small: Towards a Holistic Causal Model for Continuous Software Traceability
SHF:小型:迈向连续软件可追溯性的整体因果模型
  • 批准号:
    2007246
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Bug Report Management 2.0
协作研究:SHF:中:错误报告管理 2.0
  • 批准号:
    1955853
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
EAGER: Mapping Future Synergies between Deep Learning and Software Engineering
EAGER:绘制深度学习与软件工程之间的未来协同效应
  • 批准号:
    1927679
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
CI-EN: Collaborative Research: TraceLab Community Infrastructure for Replication, Collaboration, and Innovation
CI-EN:协作研究:用于复制、协作和创新的 TraceLab 社区基础设施
  • 批准号:
    1510239
  • 财政年份:
    2015
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
SHF: Small: Deep Learning Software Repositories
SHF:小型:深度学习软件存储库
  • 批准号:
    1525902
  • 财政年份:
    2015
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
CAREER: Enabling License Compliance Analysis and Verification for Evolving Software
职业:为不断发展的软件提供许可证合规性分析和验证
  • 批准号:
    1253837
  • 财政年份:
    2013
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Supporting student travel from underrepresented groups to the 28th IEEE International Conference on Software Maintenance (ICSM 2012)
支持代表性不足群体的学生参加第 28 届 IEEE 软件维护国际会议 (ICSM 2012)
  • 批准号:
    1240505
  • 财政年份:
    2012
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
III: Small: Collaborative Research: Linking Evolving Software Requirements and Acceptance Tests
III:小:协作研究:将不断发展的软件需求和验收测试联系起来
  • 批准号:
    1218129
  • 财政年份:
    2012
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似国自然基金

昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
  • 批准号:
    32000033
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
  • 批准号:
    31972324
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
  • 批准号:
    81900988
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
  • 批准号:
    31870821
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
  • 批准号:
    31802058
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
  • 批准号:
    31772128
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
  • 批准号:
    81704176
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
  • 批准号:
    91640114
  • 批准年份:
    2016
  • 资助金额:
    85.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

CPS: Small: NSF-DST: Autonomous Operations of Multi-UAV Uncrewed Aerial Systems using Onboard Sensing to Monitor and Track Natural Disaster Events
CPS:小型:NSF-DST:使用机载传感监测和跟踪自然灾害事件的多无人机无人航空系统自主操作
  • 批准号:
    2343062
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Small Scalable Natural Language Models using Explicit Memory
使用显式记忆的小型可扩展自然语言模型
  • 批准号:
    DP230102775
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Discovery Projects
SaTC: CORE: Small: Generalizing Adversarial Examples in Natural Language
SaTC:核心:小:概括自然语言中的对抗性示例
  • 批准号:
    2124538
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Phase 1 Evaluation of Enhanced Natural Killer Cells as a Treatment Strategy in Non-Small cell Lung Cancer Patients Refractory to PD-1/PD-L1 Immune Checkpoint Inhibitors
增强型自然杀伤细胞作为对 PD-1/PD-L1 免疫检查点抑制剂耐药的非小细胞肺癌患者的治疗策略的 1 期评估
  • 批准号:
    10680537
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
Phase 1 Evaluation of Enhanced Natural Killer Cells as a Treatment Strategy in Non-Small cell Lung Cancer Patients Refractory to PD-1/PD-L1 Immune Checkpoint Inhibitors
增强型自然杀伤细胞作为对 PD-1/PD-L1 免疫检查点抑制剂耐药的非小细胞肺癌患者的治疗策略的 1 期评估
  • 批准号:
    10540181
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
Collaborative Research: Examining the Vulnerability and Recovery of Small Farms to Natural Hazards and the Impact to Rural Community Resilience
合作研究:检查小农场对自然灾害的脆弱性和恢复以及对农村社区复原力的影响
  • 批准号:
    2053534
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: Examining the Vulnerability and Recovery of Small Farms to Natural Hazards and the Impact to Rural Community Resilience
合作研究:检查小农场对自然灾害的脆弱性和恢复以及对农村社区复原力的影响
  • 批准号:
    2053115
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
SCC-CIVIC-PG Track B: Remote Monitoring of Small Rural Water Systems to Ensure Safe Drinking Water through Disasters and Natural Recovery
SCC-CIVIC-PG 轨道 B:远程监控小型农村供水系统,确保灾难和自然恢复过程中的安全饮用水
  • 批准号:
    2043847
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Immune evasion from natural killer cells by non small cell lung carcinoma
非小细胞肺癌自然杀伤细胞的免疫逃避
  • 批准号:
    453387
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Operating Grants
Collaborative Research: RI: Small: NL(V)P: Natural Language (Variety) Processing
合作研究:RI:小型:NL(V)P:自然语言(品种)处理
  • 批准号:
    2125201
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了