CIF: Small: RUI: Low Correlation and Highly Nonlinear Structures for Communications and Sensing
CIF:小型:RUI:用于通信和传感的低相关性和高度非线性结构
基本信息
- 批准号:1815487
- 负责人:
- 金额:$ 33.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many communications and remote sensing systems require modulation protocols that are described by digital sequences, which may be regarded as words composed of symbols from a prescribed alphabet, such as the binary alphabet with symbols 0 and 1. The efficiency of the system will often depend on producing sequences that are as uncorrelated as possible: they should not resemble shifted (time-delayed) versions of each other, nor even of themselves. Lack of resemblance between a sequence and shifted versions of itself aids in synchronization and timing, which is useful in radar and sonar. Lack of resemblance between two different sequences (no matter how they are shifted) prevents confusion between different users in communications networks. Random sequences are not ideal for these applications, as even random sequences are expected to have occasional repetitions. It is more advantageous to use pseudorandom sequences that avoid repetition to a greater degree than random sequences do. These pseudorandom sequences and related mathematical structures, such as Boolean functions, are also significant in other information-theoretic problems, such as in cryptography, where one seeks to design permutations that have a simple underlying mathematical form (to ease encryption and decryption) but avoid resembling easily detectable patterns (to resist cryptanalysis). Pseudorandom sequences find further applications in error-correcting codes, antenna arrays, scientific instrumentation, and acoustic design, and thus science and technology benefit both from the analysis of known digital sequences and the discovery of new ones.The goal of this project is to create and investigate digital sequences and related mathematical structures with good correlation properties. This project considers both periodic and aperiodic forms of correlation, as both are important in applications. In periodic correlation, the shifting of the sequences is cyclic, and the maximum length linear feedback shift register sequences (m-sequences) are a common building block in the design of digital sequences with low periodic correlation. Finding pairs of m-sequences with low mutual correlation is equivalent to finding highly nonlinear permutations of finite fields, which can be used to make cryptosystems resilient to linear cryptanalysis. This project will investigate m-sequence pairs with exceptional correlation properties, which translate into exceptional nonlinearity properties of the corresponding permutations. Extremal properties, such as exceptionally high nonlinearity or exceptionally few correlation values, are sought out, and this project will investigate bounds and limitations on these extremes using tools from abstract algebra, combinatorics, and number theory, as well as empirical computational explorations. In aperiodic correlation, the shifting of sequences is a non-cyclic translation, and various families of sequences whose correlation properties make them superior to random sequences are known, but their analysis has been difficult and many open questions remain. This project will analyze the performance of these sequences both empirically and theoretically, and will seek new families of sequences with good correlation propertiesThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多通信和遥感系统需要由数字序列描述的调制协议,数字序列可以被认为是由来自规定字母表的符号组成的字,例如具有符号0和1的二进制字母表。系统的效率通常取决于产生尽可能不相关的序列:它们不应该类似于彼此的移位(时间延迟)版本,甚至也不应该类似于它们自己。序列和其自身的移位版本之间缺乏相似性有助于同步和定时,这在雷达和声纳中很有用。两个不同序列之间缺乏相似性(无论它们如何移位)可以防止通信网络中不同用户之间的混淆。随机序列对于这些应用并不理想,因为即使是随机序列也会偶尔重复。使用伪随机序列比随机序列更大程度地避免重复是更有利的。这些伪随机序列和相关的数学结构,如布尔函数,在其他信息理论问题中也很重要,如密码学,其中人们试图设计具有简单的底层数学形式(以简化加密和解密)但避免类似于容易检测的模式(以抵抗密码分析)的排列。伪随机序列在纠错码、天线阵列、科学仪器和声学设计等方面有着广泛的应用,因此,科学和技术都可以从对已知数字序列的分析和新序列的发现中受益。本项目的目标是创建和研究具有良好相关特性的数字序列及其相关数学结构。这个项目考虑了周期性和非周期性的相关性,因为两者在应用中都很重要。在周期相关中,序列的移位是循环的,并且最大长度线性反馈移位寄存器序列(m序列)是低周期相关数字序列设计中的常见构建块。寻找具有低互相关性的m序列对等价于寻找有限域的高度非线性置换,这可以用于使密码系统对线性密码分析具有弹性。这个项目将研究具有特殊相关特性的m序列对,这些特性转化为相应排列的特殊非线性特性。极端的属性,如异常高的非线性或异常少的相关值,寻求出来,这个项目将调查这些极端使用抽象代数,组合数学和数论的工具,以及经验计算探索的界限和限制。在非周期相关中,序列的移位是非循环平移,并且已知各种序列族,其相关性使其上级随机序列,但它们的分析一直很困难,并且仍然存在许多悬而未决的问题。该项目将分析这些序列的性能,无论是经验和理论,并将寻求新的家庭序列具有良好的相关性properties。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sequences with Low Correlation
- DOI:10.1007/978-3-030-05153-2_8
- 发表时间:2018-06
- 期刊:
- 影响因子:0
- 作者:D. Katz
- 通讯作者:D. Katz
Peak Sidelobe Level and Peak Crosscorrelation of Golay–Rudin–Shapiro Sequences
Golay-Rudin-Shapiro 序列的峰值旁瓣电平和峰值互相关
- DOI:10.1109/tit.2021.3135564
- 发表时间:2021
- 期刊:
- 影响因子:2.5
- 作者:Katz, Daniel J.;Van der Linden, Courtney M.
- 通讯作者:Van der Linden, Courtney M.
An improved uncertainty principle for functions with symmetry
对称函数的改进不确定性原理
- DOI:10.1016/j.jalgebra.2021.07.017
- 发表时间:2021
- 期刊:
- 影响因子:0.9
- 作者:Garcia, Stephan Ramon;Karaali, Gizem;Katz, Daniel J.
- 通讯作者:Katz, Daniel J.
The Resolution of Niho’s Last Conjecture Concerning Sequences, Codes, and Boolean Functions
- DOI:10.1109/tit.2021.3098342
- 发表时间:2020-06
- 期刊:
- 影响因子:2.5
- 作者:T. Helleseth;D. Katz;Chunlei Li
- 通讯作者:T. Helleseth;D. Katz;Chunlei Li
Sequence Pairs with Lowest Combined Autocorrelation and Crosscorrelation
具有最低组合自相关和互相关的序列对
- DOI:10.1109/tit.2022.3187923
- 发表时间:2022
- 期刊:
- 影响因子:2.5
- 作者:Katz, Daniel J.;Moore, Eli
- 通讯作者:Moore, Eli
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Katz其他文献
HCV recurrence and death after viral clearance in HCV-viremic donor to HCV-negative kidney recipient - a case report
HCV 病毒清除后 HCV 复发和死亡在 HCV 病毒血症供体到 HCV 阴性肾受体中 - 病例报告
- DOI:
10.1016/j.ajt.2024.12.180 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:8.200
- 作者:
Shengliang He;Sung-Hoon Kim;Tomohiro Tanaka;David Thomsen;Christie Thomas;Daniel Katz;Hassan Aziz;Alan Reed - 通讯作者:
Alan Reed
Validation of Remote Administration of Social Cognitive Assessments in Pregnant Women
- DOI:
10.1016/j.biopsych.2021.02.558 - 发表时间:
2021-05-01 - 期刊:
- 影响因子:
- 作者:
Emma Smith;Danielle Torres;Deborah Li;Vignesh Rajasekaran;Margaret McClure;Daniel Katz;Julie Spicer;Nicole Derish;Antonia S. New;Erin A. Hazlett;Harold W. Koenigsberg;Maria de las Mercedes Perez-Rodriguez - 通讯作者:
Maria de las Mercedes Perez-Rodriguez
375. Social Cognition in Pregnancy and Postpartum and an Association With Maternal Caregiving
- DOI:
10.1016/j.biopsych.2023.02.615 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:
- 作者:
Emma Smith;Matina Kakalis;Juliana Camacho Castro;Kendall Moore;Samantha Miyares;Cristela Lopez;Sarah Garikana;Madeleine Carter;Leif Alino;Maeve McClure;Marie Balemian;Harold W. Koenigsberg;Nakiyah Knibbs;Luciana Vieira;Rebecca H. Jessel;Andres Ramirez-Zamudio;Anna Rommel;Robert Pietrzak;Veerle Bergink;Daniel Katz - 通讯作者:
Daniel Katz
Quantifying Pollen Forecast Accuracy: An Assessment Of Private Sector Predictions In New York
量化花粉预报准确性:对纽约私营部门预测的评估
- DOI:
10.1016/j.jaci.2023.11.355 - 发表时间:
2024-02-01 - 期刊:
- 影响因子:11.200
- 作者:
Daniel Katz;Kyle Edwards;Sida Huang;Guy Robinson - 通讯作者:
Guy Robinson
Ezra Pound’s Provincial Provence: Arnaut Daniel, Gavin Douglas, and the Vulgar Tongue
埃兹拉·庞德的普罗旺斯省:阿诺特·丹尼尔、加文·道格拉斯和粗俗的舌头
- DOI:
10.1215/00267929-1589167 - 发表时间:
2012 - 期刊:
- 影响因子:0.4
- 作者:
Daniel Katz - 通讯作者:
Daniel Katz
Daniel Katz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Katz', 18)}}的其他基金
Collaborative Research: EAGER: Characterizing Research Software from NSF Awards
协作研究:EAGER:获得 NSF 奖项的研究软件特征
- 批准号:
2211279 - 财政年份:2022
- 资助金额:
$ 33.09万 - 项目类别:
Standard Grant
CIF: Small: RUI: Highly Nonlinear and Pseudorandom Structures for Communications and Sensing
CIF:小:RUI:用于通信和传感的高度非线性和伪随机结构
- 批准号:
2206454 - 财政年份:2022
- 资助金额:
$ 33.09万 - 项目类别:
Standard Grant
Collaborative Research: Sustainability: A Community-Centered Approach for Supporting and Sustaining Parsl
合作研究:可持续性:以社区为中心的支持和维持 Parsl 的方法
- 批准号:
2209920 - 财政年份:2022
- 资助金额:
$ 33.09万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: funcX: A Function Execution Service for Portability and Performance
协作研究:框架:funcX:可移植性和性能的函数执行服务
- 批准号:
2004932 - 财政年份:2020
- 资助金额:
$ 33.09万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Small: Efficient and Policy-driven Burst Buffer Sharing
合作研究:OAC Core:小型:高效且策略驱动的突发缓冲区共享
- 批准号:
2008286 - 财政年份:2020
- 资助金额:
$ 33.09万 - 项目类别:
Standard Grant
REU Site: INCLUSION - Incubating a New Community of Leaders Using Software, Inclusion, Innovation, Interdisciplinary and OpeN-Science
REU 网站:包容性 - 利用软件、包容性、创新、跨学科和开放科学孵化新的领导者社区
- 批准号:
1659702 - 财政年份:2017
- 资助金额:
$ 33.09万 - 项目类别:
Standard Grant
Kansas-Missouri-Nebraska Commutative Algebra Conference (KUMUNU 2016)
堪萨斯州-密苏里州-内布拉斯加州交换代数会议 (KUMUNU 2016)
- 批准号:
1645050 - 财政年份:2016
- 资助金额:
$ 33.09万 - 项目类别:
Standard Grant
The 4th Workshop on Sustainable Software for Science: Best Practices and Experiences (WSSSPE4)
第四届科学可持续软件研讨会:最佳实践和经验(WSSSPE4)
- 批准号:
1648293 - 财政年份:2016
- 资助金额:
$ 33.09万 - 项目类别:
Standard Grant
Promoting Action to Build Research Communities in the Age of Open Science
促进开放科学时代建设研究社区的行动
- 批准号:
1645571 - 财政年份:2016
- 资助金额:
$ 33.09万 - 项目类别:
Standard Grant
RUI: Extremal Combinatorics of Patterns, Correlation, and Structure
RUI:模式、相关性和结构的极值组合
- 批准号:
1500856 - 财政年份:2015
- 资助金额:
$ 33.09万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Collaborative Research: HCC: Small: RUI: Drawing from Life in Extended Reality: Advancing and Teaching Cross-Reality User Interfaces for Observational 3D Sketching
合作研究:HCC:小型:RUI:从扩展现实中的生活中汲取灵感:推进和教授用于观察 3D 草图绘制的跨现实用户界面
- 批准号:
2326998 - 财政年份:2023
- 资助金额:
$ 33.09万 - 项目类别:
Standard Grant
Collaborative Research: RUI: The challenges of living small: functional tradeoffs in the vertebral bone structure of diminutive mammals
合作研究:RUI:小型生活的挑战:小型哺乳动物椎骨结构的功能权衡
- 批准号:
2223964 - 财政年份:2023
- 资助金额:
$ 33.09万 - 项目类别:
Standard Grant
III: Small: RUI: Designing Structure-Phenotype Query-Retrieval and Analysis Systems for Microscopy-Based Whole Organism Studies
III:小:RUI:为基于显微镜的整个生物体研究设计结构表型查询检索和分析系统
- 批准号:
2401096 - 财政年份:2023
- 资助金额:
$ 33.09万 - 项目类别:
Standard Grant
III: Small: RUI: A Fairness Auditing Framework for Predictive Mobility Models
III:小:RUI:预测移动模型的公平性审核框架
- 批准号:
2304213 - 财政年份:2023
- 资助金额:
$ 33.09万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Small: RUI: Drawing from Life in Extended Reality: Advancing and Teaching Cross-Reality User Interfaces for Observational 3D Sketching
合作研究:HCC:小型:RUI:从扩展现实中的生活中汲取灵感:推进和教授用于观察 3D 草图绘制的跨现实用户界面
- 批准号:
2326999 - 财政年份:2023
- 资助金额:
$ 33.09万 - 项目类别:
Standard Grant
Collaborative Research: RUI: The challenges of living small: functional tradeoffs in the vertebral bone structure of diminutive mammals
合作研究:RUI:小型生活的挑战:小型哺乳动物椎骨结构的功能权衡
- 批准号:
2223965 - 财政年份:2023
- 资助金额:
$ 33.09万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: RUI: CMOS+X: Honey-ReRAM Enabled 3D Neuromorphic Accelerator
合作研究:SHF:小型:RUI:CMOS X:Honey-ReRAM 支持的 3D 神经形态加速器
- 批准号:
2247343 - 财政年份:2023
- 资助金额:
$ 33.09万 - 项目类别:
Standard Grant
CSR: Small: RUI: Octopus OS: A High-Performance Cloud OS with Accurate Resource Abstraction.
CSR:小型:RUI:Octopus OS:具有准确资源抽象的高性能云操作系统。
- 批准号:
2324923 - 财政年份:2023
- 资助金额:
$ 33.09万 - 项目类别:
Standard Grant
AF: Small: RUI: Toward High-Performance Block Krylov Subspace Algorithms for Solving Large-Scale Linear Systems
AF:小:RUI:用于求解大规模线性系统的高性能块 Krylov 子空间算法
- 批准号:
2327619 - 财政年份:2023
- 资助金额:
$ 33.09万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: RUI: CMOS+X: Honey-ReRAM Enabled 3D Neuromorphic Accelerator
合作研究:SHF:小型:RUI:CMOS X:Honey-ReRAM 支持的 3D 神经形态加速器
- 批准号:
2247342 - 财政年份:2023
- 资助金额:
$ 33.09万 - 项目类别:
Standard Grant














{{item.name}}会员




