CSR: Small: ARTEMIS: Algorithm-Hardware Co-Design for Efficient Machine Learning Systems
CSR:小型:ARTEMIS:高效机器学习系统的算法硬件协同设计
基本信息
- 批准号:1815780
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With the increased popularity of machine learning algorithms deployed on a variety of hardware systems, the problem of identifying the best model among numerous possible configurations has drawn significant attention. The problem is compounded by the need to select the right platform to run these applications, under given power or latency constraints. This "hardware wall" forces machine learning service providers to constantly redesign the underlying hardware fabric to satisfy certain constraints. This project develops tools for automatic and efficient co-design of machine learning algorithms and hardware platforms that will result in significant cost and time-to-market reduction for machine learning systems.The project introduces efficient meta-learning for machine learning systems and algorithm-hardware platform co-design. Specifically, the project will develop meta-learning algorithms for the optimization of machine learning models under system hardware constraints and formulate the hardware design of efficient machine learning systems as a machine learning problem itself, that can be effectively solved by meta-learning optimization algorithms. Finally, the project will develop multi-objective algorithms for the co-design of machine learning applications and hardware platforms they need to run on, and exploit domain knowledge from hardware engineering and design schemes to substantially accelerate hardware-aware model optimization.The results of the project seek to change the landscape of modeling, optimization, and design methodologies for efficient machine learning systems. Furthermore, the work aims to have an important educational and mentoring component by potentially changing how engineers are trained in a multidisciplinary fashion for dealing with next generation technological advances in general, and the problem of efficiently and intelligently co-designing machine learning algorithms and the hardware platforms they are running on, in particular. The project will involve a diverse graduate and undergraduate trainee population, while expanding the project's outreach to high-school and middle-school students.The data, code, results, and simulators developed in this project will be made available publicly throughout the duration of the project and for at least four years after the end of the project. The location of the repository is on the website of Carnegie Mellon University's Energy Aware Computing group (www.ece.cmu.edu/~enyac).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着部署在各种硬件系统上的机器学习算法的日益普及,在众多可能的配置中识别最佳模型的问题已经引起了极大的关注。在给定的功率或延迟限制下,需要选择正确的平台来运行这些应用程序,这使得问题更加复杂。这种“硬件墙”迫使机器学习服务提供商不断重新设计底层硬件结构,以满足某些限制。该项目开发了机器学习算法和硬件平台的自动和高效协同设计工具,这将显著降低机器学习系统的成本和上市时间。该项目为机器学习系统和算法硬件平台协同设计引入了高效的元学习。具体而言,该项目将开发元学习算法,用于在系统硬件约束下优化机器学习模型,并将高效机器学习系统的硬件设计制定为机器学习问题本身,可以通过元学习优化算法有效解决。最后,该项目将开发多目标算法,用于机器学习应用程序及其所需运行的硬件平台的协同设计,并利用硬件工程和设计方案中的领域知识,大幅加速硬件感知模型优化。该项目的成果旨在改变高效机器学习系统的建模、优化和设计方法的格局。此外,这项工作旨在通过潜在地改变工程师以多学科方式接受培训的方式来处理下一代技术进步,以及有效和智能地共同设计机器学习算法及其运行的硬件平台的问题,来提供重要的教育和指导。该项目将涉及多样化的研究生和本科生培训人群,同时将项目扩展到高中和初中学生。该项目中开发的数据,代码,结果和模拟器将在整个项目期间公开,并在项目结束后至少四年公开。该存储库的位置在卡内基梅隆大学的能源感知计算小组的网站上(www.ece.cmu.edu/Eschenyac)。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Designing Adaptive Neural Networks for Energy-Constrained Image Classification
- DOI:10.1145/3240765.3240796
- 发表时间:2018-08
- 期刊:
- 影响因子:0
- 作者:Dimitrios Stamoulis;Ting-Wu Chin;Anand P. Krishnan;Haocheng Fang;S. Sajja;Mitchell Bognar;Diana Marculescu
- 通讯作者:Dimitrios Stamoulis;Ting-Wu Chin;Anand P. Krishnan;Haocheng Fang;S. Sajja;Mitchell Bognar;Diana Marculescu
DeepNVM++: Cross-Layer Modeling and Optimization Framework of Nonvolatile Memories for Deep Learning
- DOI:10.1109/tcad.2021.3127148
- 发表时间:2020-12
- 期刊:
- 影响因子:2.9
- 作者:A. Inci;Mehmet Meric Isgenc;Diana Marculescu
- 通讯作者:A. Inci;Mehmet Meric Isgenc;Diana Marculescu
Single-Path Mobile AutoML: Efficient ConvNet Design and NAS Hyperparameter Optimization
- DOI:10.1109/jstsp.2020.2971421
- 发表时间:2019-07
- 期刊:
- 影响因子:7.5
- 作者:Dimitrios Stamoulis;Ruizhou Ding;Di Wang;Dimitrios Lymberopoulos;B. Priyantha;Jie Liu;Diana Marculescu
- 通讯作者:Dimitrios Stamoulis;Ruizhou Ding;Di Wang;Dimitrios Lymberopoulos;B. Priyantha;Jie Liu;Diana Marculescu
Hardware-Aware Machine Learning: Modeling and Optimization
- DOI:10.1145/3240765.3243479
- 发表时间:2018-09
- 期刊:
- 影响因子:0
- 作者:Diana Marculescu;Dimitrios Stamoulis;E. Cai
- 通讯作者:Diana Marculescu;Dimitrios Stamoulis;E. Cai
Single-Path NAS: Device-Aware Efficient ConvNet Design
- DOI:
- 发表时间:2019-05
- 期刊:
- 影响因子:0
- 作者:Dimitrios Stamoulis;Ruizhou Ding;Di Wang;Dimitrios Lymberopoulos;B. Priyantha;Jie Liu-;Diana Marculescu
- 通讯作者:Dimitrios Stamoulis;Ruizhou Ding;Di Wang;Dimitrios Lymberopoulos;B. Priyantha;Jie Liu-;Diana Marculescu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gauri Joshi其他文献
Optimal relay placement for cellular coverage extension
用于扩展蜂窝覆盖范围的最佳中继布局
- DOI:
10.1109/ncc.2011.5734705 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Gauri Joshi;A. Karandikar - 通讯作者:
A. Karandikar
Budget Impact Analysis of a Computer-Delivered Brief Alcohol Intervention in Veterans Affairs (VA) Liver Clinics: A Randomized Controlled Trial
退伍军人事务部 (VA) 肝脏诊所计算机提供的短暂酒精干预的预算影响分析:随机对照试验
- DOI:
10.1080/07347324.2020.1760755 - 发表时间:
2020 - 期刊:
- 影响因子:0.9
- 作者:
A. Esmaeili;Wei Yu;Michael A. Cucciare;Ann S Combs;Gauri Joshi;K. Humphreys - 通讯作者:
K. Humphreys
Synergy via Redundancy: Adaptive Replication Strategies and Fundamental Limits
通过冗余实现协同:自适应复制策略和基本限制
- DOI:
10.1109/tnet.2020.3047513 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Gauri Joshi;Dhruva Kaushal - 通讯作者:
Dhruva Kaushal
Efficient Replication of Queued Tasks to Reduce Latency in Cloud Systems
有效复制排队任务以减少云系统中的延迟
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Gauri Joshi - 通讯作者:
Gauri Joshi
Can Your AI Differentiate Cats from Covid-19? Sample Efficient Uncertainty Estimation for Deep Learning Safety
您的 AI 能否将猫与 Covid-19 区分开来?深度学习安全性的样本有效不确定性估计
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Ankur Mallick;Chaitanya Dwivedi;B. Kailkhura;Gauri Joshi;Yong Han - 通讯作者:
Yong Han
Gauri Joshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gauri Joshi', 18)}}的其他基金
CAREER: Frontiers of Distributed Machine Learning with Communication, Computation and Data Constraints
职业:具有通信、计算和数据约束的分布式机器学习前沿
- 批准号:
2045694 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: HERMES: On-Device Distributed Machine Learning via Model-Hardware Co-Design
协作研究:SHF:媒介:HERMES:通过模型硬件协同设计实现设备上分布式机器学习
- 批准号:
2107024 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CIF: Small: Efficient Sequential Decision-Making and Inference in the Small Data Regime
CIF:小:小数据机制中的高效顺序决策和推理
- 批准号:
2007834 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CRII: CIF: Unifying Scheduling and Optimization Techniques to Speed-up Distributed Stochastic Gradient Descent
CRII:CIF:统一调度和优化技术来加速分布式随机梯度下降
- 批准号:
1850029 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Powering Small Craft with a Novel Ammonia Engine
用新型氨发动机为小型船只提供动力
- 批准号:
10099896 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Collaborative R&D
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
- 批准号:
AH/X011747/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Fragment to small molecule hit discovery targeting Mycobacterium tuberculosis FtsZ
针对结核分枝杆菌 FtsZ 的小分子片段发现
- 批准号:
MR/Z503757/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Bacteriophage control of host cell DNA transactions by small ORF proteins
噬菌体通过小 ORF 蛋白控制宿主细胞 DNA 交易
- 批准号:
BB/Y004426/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Windows for the Small-Sized Telescope (SST) Cameras of the Cherenkov Telescope Array (CTA)
切伦科夫望远镜阵列 (CTA) 小型望远镜 (SST) 相机的窗口
- 批准号:
ST/Z000017/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
CSR: Small: Leveraging Physical Side-Channels for Good
CSR:小:利用物理侧通道做好事
- 批准号:
2312089 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
- 批准号:
2317251 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
- 批准号:
2332922 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329908 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NeTS: Small: ML-Driven Online Traffic Analysis at Multi-Terabit Line Rates
NeTS:小型:ML 驱动的多太比特线路速率在线流量分析
- 批准号:
2331111 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant