Collaborative Research: SHF: Medium: HERMES: On-Device Distributed Machine Learning via Model-Hardware Co-Design
协作研究:SHF:媒介:HERMES:通过模型硬件协同设计实现设备上分布式机器学习
基本信息
- 批准号:2107024
- 负责人:
- 金额:$ 63.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Machine Learning (ML) is poised to become the most disruptive technology in modern society by changing all aspects of how humans interact with each other or with the world around them. To be effective, ML models must use vast amounts of data and must be built and updated efficiently wherever and whenever new data, devices, or users are available. To satisfy consumer needs or stringent device or environmental constraints, ML systems must respond fast and use minimum energy whenever possible, especially in the context of widely spread Internet-of-Things (IoT) devices. This project addresses this need by developing new approaches for distributed training that allows for fast and energy efficient training in the field, directly on IoT devices. The results of this project are poised to directly impact a wide array of applications, ranging from human mobility tracking and prediction, to real-time speech or language processing. Furthermore, the project aims to change how engineers are trained in a multidisciplinary fashion for dealing with the problem of efficiently designing distributed ML systems that respond in real-time and with low energy cost to availability of data, devices, or users. The project aims to develop a body of diverse research trainees, while expanding outreach to high-school and middle-school student populations. Given the unified interdisciplinary aspects of this work, its workforce development plan, and its industrial impact, this project enables wide collaboration among emerging or established engineers and industrial partners.Most training of ML models is done centrally in the cloud, thereby not satisfying user privacy concerns or response times, and becoming inapplicable if fast model updates are needed. While efficient on-device inference has been an intense focus of recent research, on-device distributed training and inference have not been addressed from response time and energy efficiency perspectives; this is particularly important for IoT, where the network plays a major part both in training and inference efficiency. To address these challenges, this project (dubbed HERMES) provides a unified multipronged approach for meeting real-time and energy constraints in an on-device distributed setting. HERMES ensures that ML methods and underlying hardware are co-designed, thereby addressing current challenges of private data sharing, communication overhead, or real-time and energy-efficient response of distributed ML. More specifically, Hermes includes: (i) a set of scalable approaches for hardware-aware real-time, energy efficient distributed training based on federated learning and distributed optimization that is robust to data and device variability; (ii) the co-design of ML model and hardware, comprising hyperparameter optimization that exploits hardware characteristics and identifies constraint-satisfying ML models, and hardware design exploration that efficiently finds constraint satisfying architectures; and (iii) an analysis and prototyping infrastructure for demonstrating the benefits of resulting ML systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习(ML)有望成为现代社会中最具颠覆性的技术,它改变了人类与他人或与周围世界互动的方方面面。为了有效,机器学习模型必须使用大量数据,并且无论何时何地有新的数据、设备或用户可用,都必须高效地构建和更新。为了满足消费者需求或严格的设备或环境限制,机器学习系统必须尽可能快速响应并使用最少的能量,特别是在广泛传播的物联网(IoT)设备的背景下。该项目通过开发分布式培训的新方法来满足这一需求,该方法允许直接在物联网设备上进行快速和节能的现场培训。该项目的成果将直接影响一系列广泛的应用,从人类移动跟踪和预测到实时语音或语言处理。此外,该项目旨在改变工程师以多学科方式进行培训的方式,以处理有效设计分布式机器学习系统的问题,这些系统可以实时响应数据、设备或用户的可用性,并且能耗低。该项目旨在培养一批多样化的研究学员,同时扩大对高中和初中学生的接触。考虑到这项工作的统一的跨学科方面,它的劳动力发展计划,以及它的工业影响,这个项目使新兴或成熟的工程师和工业伙伴之间的广泛合作成为可能。大多数ML模型的训练集中在云中完成,因此不能满足用户隐私问题或响应时间,并且在需要快速模型更新时变得不适用。虽然高效的设备上推理一直是最近研究的焦点,但从响应时间和能源效率的角度来看,设备上的分布式训练和推理尚未得到解决;这对于物联网来说尤其重要,因为网络在训练和推理效率方面都起着重要作用。为了应对这些挑战,该项目(被称为HERMES)提供了一种统一的多管齐下的方法,以满足设备上分布式设置的实时和能源限制。HERMES确保机器学习方法和底层硬件共同设计,从而解决当前私有数据共享、通信开销或分布式机器学习的实时和节能响应方面的挑战。更具体地说,HERMES包括:(i)一套可扩展的方法,用于硬件感知的实时、节能的分布式训练,基于联邦学习和分布式优化,对数据和设备可变性具有鲁棒性;(ii)机器学习模型和硬件的协同设计,包括利用硬件特性识别满足约束的机器学习模型的超参数优化,以及有效找到满足约束的架构的硬件设计探索;(iii)分析和原型基础设施,以展示所产生的机器学习系统的好处。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Federated Hyperparameter Tuning: Challenges, Baselines, and Connections to Weight-Sharing
- DOI:
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:M. Khodak;Renbo Tu;Tian Li;Liam Li;Maria-Florina Balcan;Virginia Smith;Ameet Talwalkar
- 通讯作者:M. Khodak;Renbo Tu;Tian Li;Liam Li;Maria-Florina Balcan;Virginia Smith;Ameet Talwalkar
Heterogeneous Ensemble Knowledge Transfer for Training Large Models in Federated Learning
- DOI:10.48550/arxiv.2204.12703
- 发表时间:2022-04
- 期刊:
- 影响因子:0
- 作者:Yae Jee Cho;Andre Manoel;Gauri Joshi;Robert Sim;D. Dimitriadis
- 通讯作者:Yae Jee Cho;Andre Manoel;Gauri Joshi;Robert Sim;D. Dimitriadis
Federated Learning under Distributed Concept Drift
- DOI:10.48550/arxiv.2206.00799
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Ellango Jothimurugesan;Kevin Hsieh;Jianyu Wang;Gauri Joshi;Phillip B. Gibbons
- 通讯作者:Ellango Jothimurugesan;Kevin Hsieh;Jianyu Wang;Gauri Joshi;Phillip B. Gibbons
Communication-Efficient and Model-Heterogeneous Personalized Federated Learning via Clustered Knowledge Transfer
- DOI:10.1109/jstsp.2022.3231527
- 发表时间:2023-01-01
- 期刊:
- 影响因子:7.5
- 作者:Cho, Yae Jee;Wang, Jianyu;Joshi, Gauri
- 通讯作者:Joshi, Gauri
Towards Understanding Biased Client Selection in Federated Learning
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Yae Jee Cho;Jianyu Wang;Gauri Joshi
- 通讯作者:Yae Jee Cho;Jianyu Wang;Gauri Joshi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gauri Joshi其他文献
Optimal relay placement for cellular coverage extension
用于扩展蜂窝覆盖范围的最佳中继布局
- DOI:
10.1109/ncc.2011.5734705 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Gauri Joshi;A. Karandikar - 通讯作者:
A. Karandikar
Budget Impact Analysis of a Computer-Delivered Brief Alcohol Intervention in Veterans Affairs (VA) Liver Clinics: A Randomized Controlled Trial
退伍军人事务部 (VA) 肝脏诊所计算机提供的短暂酒精干预的预算影响分析:随机对照试验
- DOI:
10.1080/07347324.2020.1760755 - 发表时间:
2020 - 期刊:
- 影响因子:0.9
- 作者:
A. Esmaeili;Wei Yu;Michael A. Cucciare;Ann S Combs;Gauri Joshi;K. Humphreys - 通讯作者:
K. Humphreys
Synergy via Redundancy: Adaptive Replication Strategies and Fundamental Limits
通过冗余实现协同:自适应复制策略和基本限制
- DOI:
10.1109/tnet.2020.3047513 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Gauri Joshi;Dhruva Kaushal - 通讯作者:
Dhruva Kaushal
Efficient Replication of Queued Tasks to Reduce Latency in Cloud Systems
有效复制排队任务以减少云系统中的延迟
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Gauri Joshi - 通讯作者:
Gauri Joshi
Can Your AI Differentiate Cats from Covid-19? Sample Efficient Uncertainty Estimation for Deep Learning Safety
您的 AI 能否将猫与 Covid-19 区分开来?深度学习安全性的样本有效不确定性估计
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Ankur Mallick;Chaitanya Dwivedi;B. Kailkhura;Gauri Joshi;Yong Han - 通讯作者:
Yong Han
Gauri Joshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gauri Joshi', 18)}}的其他基金
CAREER: Frontiers of Distributed Machine Learning with Communication, Computation and Data Constraints
职业:具有通信、计算和数据约束的分布式机器学习前沿
- 批准号:
2045694 - 财政年份:2021
- 资助金额:
$ 63.6万 - 项目类别:
Continuing Grant
CIF: Small: Efficient Sequential Decision-Making and Inference in the Small Data Regime
CIF:小:小数据机制中的高效顺序决策和推理
- 批准号:
2007834 - 财政年份:2020
- 资助金额:
$ 63.6万 - 项目类别:
Standard Grant
CRII: CIF: Unifying Scheduling and Optimization Techniques to Speed-up Distributed Stochastic Gradient Descent
CRII:CIF:统一调度和优化技术来加速分布式随机梯度下降
- 批准号:
1850029 - 财政年份:2019
- 资助金额:
$ 63.6万 - 项目类别:
Standard Grant
CSR: Small: ARTEMIS: Algorithm-Hardware Co-Design for Efficient Machine Learning Systems
CSR:小型:ARTEMIS:高效机器学习系统的算法硬件协同设计
- 批准号:
1815780 - 财政年份:2018
- 资助金额:
$ 63.6万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 63.6万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 63.6万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 63.6万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 63.6万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 63.6万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403408 - 财政年份:2024
- 资助金额:
$ 63.6万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 63.6万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 63.6万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403135 - 财政年份:2024
- 资助金额:
$ 63.6万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403409 - 财政年份:2024
- 资助金额:
$ 63.6万 - 项目类别:
Standard Grant














{{item.name}}会员




